ترغب بنشر مسار تعليمي؟ اضغط هنا

Application of the lace expansion to the $varphi^4$ model

219   0   0.0 ( 0 )
 نشر من قبل Akira Sakai
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Akira Sakai




اسأل ChatGPT حول البحث

Using the Griffiths-Simon construction of the $varphi^4$ model and the lace expansion for the Ising model, we prove that, if the strength $lambdage0$ of nonlinearity is sufficiently small for a large class of short-range models in dimensions $d>4$, then the critical $varphi^4$ two-point function $langlevarphi_ovarphi_xrangle_{mu_c}$ is asymptotically $|x|^{2-d}$ times a model-dependent constant, and the critical point is estimated as $mu_c=mathscr{hat J}-fraclambda2langlevarphi_o^2rangle_{mu_c}+O(lambda^2)$, where $mathscr{hat J}$ is the massless point for the Gaussian model.



قيم البحث

اقرأ أيضاً

193 - Akira Sakai 2020
The lace expansion for the Ising two-point function was successfully derived in Sakai (Commun. Math. Phys., 272 (2007): 283--344). It is an identity that involves an alternating series of the lace-expansion coefficients. In the same paper, we claimed that the expansion coefficients obey certain diagrammatic bounds which imply faster $x$-space decay (as the two-point function cubed) above the critical dimension $d_c$ ($=4$ for finite-variance models), if the spin-spin coupling is ferromagnetic, translation-invariant, summable and symmetric with respect to the underlying lattice symmetries. However, we recently found a flaw in the proof of Lemma 4.2 in Sakai (2007), a key lemma to the aforementioned diagrammatic bounds. In this paper, we no longer use the problematic Lemma 4.2 of Sakai (2007), and prove new diagrammatic bounds on the expansion coefficients that are slightly more complicated than those in Proposition 4.1 of Sakai (2007) but nonetheless obey the same fast decay above the critical dimension $d_c$. Consequently, the lace-expansion results for the Ising and $varphi^4$ models so far are all saved. The proof is based on the random-current representation and its source-switching technique of Griffiths, Hurst and Sherman, combined with a double expansion: a lace expansion for the lace-expansion coefficients.
This paper develops a method to carry out the large-$N$ asymptotic analysis of a class of $N$-dimensional integrals arising in the context of the so-called quantum separation of variables method. We push further ideas developed in the context of rand om matrices of size $N$, but in the present problem, two scales $1/N^{alpha}$ and $1/N$ naturally occur. In our case, the equilibrium measure is $N^{alpha}$-dependent and characterised by means of the solution to a $2times 2$ Riemann--Hilbert problem, whose large-$N$ behavior is analysed in detail. Combining these results with techniques of concentration of measures and an asymptotic analysis of the Schwinger-Dyson equations at the distributional level, we obtain the large-$N$ behavior of the free energy explicitly up to $o(1)$. The use of distributional Schwinger-Dyson is a novelty that allows us treating sufficiently differentiable interactions and the mixing of scales $1/N^{alpha}$ and $1/N$, thus waiving the analyticity assumptions often used in random matrix theory.
We present a new dynamical proof of the Thouless-Anderson-Palmer (TAP) equations for the classical Sherrington-Kirkpatrick spin glass at sufficiently high temperature. In our derivation, the TAP equations are a simple consequence of the decay of the two point correlation functions. The methods can also be used to establish the decay of higher order correlation functions. We illustrate this by proving a suitable decay bound on the three point functions from which we derive an analogue of the TAP equations for the two point functions.
225 - Soon Hoe Lim , Jan Wehr 2017
We study a class of systems whose dynamics are described by generalized Langevin equations with state-dependent coefficients. We find that in the limit, in which all the characteristic time scales vanish at the same rate, the position variable of the system converges to a homogenized process, described by an equation containing additional drift terms induced by the noise. The convergence results are obtained using the main result in cite{hottovy2015smoluchowski}, whose version is proven here under a weaker spectral assumption on the damping matrix. We apply our results to study thermophoresis of a Brownian particle in a non-equilibrium heat bath.
We consider the mean-field classical Heisenberg model and obtain detailed information about the total spin of the system by studying the model on a complete graph and sending the number of vertices to infinity. In particular, we obtain Cramer- and Sa nov-type large deviations principles for the total spin and the empirical spin distribution and demonstrate a second-order phase transition in the Gibbs measures. We also study the asymptotics of the total spin throughout the phase transition using Steins method, proving central limit theorems in the sub- and supercritical phases and a nonnormal limit theorem at the critical temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا