ﻻ يوجد ملخص باللغة العربية
The antiferrodistortive (AFD) phase transition for a pseudotetragonal composition of Pb(Zr0.530Ti0.470)O3 (PZT) doped with 6% Sr has been investigated using sound velocity (4 to 320K), high resolution synchrotron X-ray powder diffraction (100 to 800K) and high resolution as well as high flux neutron powder diffraction measurements (4K) to settle the existing controversies about the true ground state of PZT in the morphotropic phase boundary (MPB) region. The multiplet character of the neutron diffraction profiles of (3/2 1/2 1/2)pc (pseudocubic or pc indices) and (3/2 3/2 1/2)pc superlattice peaks, appearing below the AFD transition temperature, rules out the rhombohedral R3c space group. The true ground state is confirmed to be monoclinic in the Cc space group in agreement with the predictions of the first principles calculations and earlier findings for pure PZT in the MPB region. 6% Sr2+ substitution and the use of high wavelength ({lambda}=2.44{AA}) neutrons have played key role in settling the existing controversies about the true ground state of PZT in the MPB region.
In this work, we address the issue of peaking of piezoelectric response at a particular composition in the morphotropic phase boundary (MPB) region of (Pb0.940Sr0.06)(ZrxTi1-x)O3 (PSZT) piezoelectric ceramics. We present results of synchrotron x-ray
Morphotropic phase boundaries (MPBs) show substantial piezoelectric and dielectric responses, which have practical applications. The predicted existence of MPB in HfO2-ZrO2 solid solution thin film has provided a new way to increase the dielectric pr
We have investigated heteroepitaxial films of Sm-doped BiFeO3 with a Sm-concentration near a morphotropic phase boundary. Our high-resolution synchrotron X-ray diffraction, carried out in a temperature range of 25C to 700C, reveals substantial phase
We report here the structure and dielectric studies on a new lead free (1-x)BaTiO3-xBi(Mg1/2Zr1/2)O3 solid solution to explore the morphotropic phase boundary. The powder x-ray diffraction studies on (1-x)BaTiO3-xBi(Mg1/2Zr1/2)O3 solid solution sugge
Two-dimensional polarity is intriguing but remains in the early stage. Here a structural evolution diagram is established for GeS monolayer, which leads a noncollinear ferrielectric $delta$-phase energetically as stable as the ferroelectric $alpha$-p