We have obtained analytical expressions for the q-dependent static spin susceptibility of monolayer transition metal dichalcogenides, considering both the electron-doped and hole-doped cases. Our results are applied to calculate spin-related physical observables of monolayer MoS2, focusing especially on in-plane/out-of-plane anisotropies. We find that the hole-mediated RKKY exchange interaction for in-plane impurity-spin components decays with the power law $R^{-5/2}$ as a function of distance $R$, which deviates from the $R^{-2}$ power law normally exhibited by a two-dimensional Fermi liquid. In contrast, the out-of-plane spin response shows the familiar $R^{-2}$ long-range behavior. We also use the spin susceptibility to define a collective g-factor for hole-doped MoS2 systems and discuss its density-dependent anisotropy.