ﻻ يوجد ملخص باللغة العربية
Inspired by the classical phenomenon of random walk, the concept of quantum walk has emerged recently as a powerful platform for the dynamical simulation of complex quantum systems, entanglement production and universal quantum computation. Such a wide perspective motivates a renewing search for efficient, scalable and stable implementations of this quantum process. Photonic approaches have hitherto mainly focused on multi-path schemes, requiring interferometric stability and a number of optical elements that scales quadratically with the number of steps. Here we report the experimental realization of a quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous indistinguishable photons. The whole process develops in a single light beam, with no need of interferometers, and requires optical resources scaling linearly with the number of steps. Our demonstration introduces a novel versatile photonic platform for implementing quantum simulations, based on exploiting the transverse modes of a single light beam as quantum degrees of freedom.
Quantum key distributions (QKD) systems often rely on polarization of light for encoding, thus limiting the amount of information that can be sent per photon and placing tight bounds on the error that such a system can tolerate. Here we describe a pr
The scaling up of quantum hardware is the fundamental challenge ahead in order to realize the disruptive potential of quantum technology in information science. Among the plethora of hardware platforms, photonics stands out by offering a modular appr
Increasing control of single photons enables new applications of photonic quantum-enhanced technology and further experimental exploration of fundamental quantum phenomena. Here, we demonstrate quantum logic using narrow linewidth photons that are pr
We realize quantum gates for path qubits with a high-speed, polarization-independent and tunable beam splitter. Two electro-optical modulators act in a Mach-Zehnder interferometer as high-speed phase shifters and rapidly tune its splitting ratio. We
Many phenomena in solid-state physics can be understood in terms of their topological properties. Recently, controlled protocols of quantum walks are proving to be effective simulators of such phenomena. Here we report the realization of a photonic q