ﻻ يوجد ملخص باللغة العربية
We introduce a numerical method to integrate the stochastic Landau-Lifshitz-Gilbert equation in spherical coordinates for generic discretization schemes. This method conserves the magnetization modulus and ensures the approach to equilibrium under the expected conditions. We test the algorithm on a benchmark problem: the dynamics of a uniformly magnetized ellipsoid. We investigate the influence of various parameters, and in particular, we analyze the efficiency of the numerical integration, in terms of the number of steps needed to reach a chosen long time with a given accuracy.
We construct a path-integral representation of the generating functional for the dissipative dynamics of a classical magnetic moment as described by the stochastic generalization of the Landau-Lifshitz-Gilbert equation proposed by Brown, with the pos
We investigate in details the inertial dynamics of a uniform magnetization in the ferromagnetic resonance (FMR) context. Analytical predictions and numerical simulations of the complete equations within the Inertial Landau-Lifshitz-Gilbert (ILLG) mod
We consider the numerical approximation of the inertial Landau-Lifshitz-Gilbert (iLLG) equation, which describes the dynamics of the magnetization in ferromagnetic materials at subpicosecond time scales. We propose and analyze two fully discrete nume
We propose new semi-implicit numerical methods for the integration of the stochastic Landau-Lifshitz equation with built-in angular momentum conservation. The performance of the proposed integrators is tested on the 1D Heisenberg chain. For this syst
We present a comparison between finite differences schemes and a pseudospectral method applied to the numerical integration of stochastic partial differential equations that model surface growth. We have studied, in 1+1 dimensions, the Kardar, Parisi