ﻻ يوجد ملخص باللغة العربية
Chemical vapor deposited graphene is nanopatterned by a spherical block-copolymer etch mask. The use of spherical rather than cylindrical block copolymers allows homogeneous patterning of cm-scale areas without any substrate surface treatment. Raman spectroscopy was used to study the controlled generation of point defects in the graphene lattice with increasing etching time, confirming that alongside the nanomesh patterning, the nanopatterned CVD graphene presents a high defect density between the mesh holes. The nanopatterned samples showed sensitivities for NO2 of more than one order of magnitude higher than for non-patterned graphene. NO2 concentrations as low as 300 ppt were detected with an ultimate detection limit of tens of ppt. This is so far the smallest value reported for not UV illuminated graphene chemiresistive NO2 gas sensors. The drastic improvement in the gas sensitivity is believed to be due to the high adsorption site density, thanks to the combination of edge sites and point defect sites. This work opens the possibility of large area fabrication of nanopatterned graphene with extreme density of adsorption sites for sensing applications.
Enhancing light-matter interaction by exciting Dirac plasmons on nanopatterned monolayer graphene is an efficient route to achieve high infrared absorption. Here, we designed and fabricated the hexagonal planar arrays of nanohole and nanodisk with an
The main challenge to exploiting plasmons for gas vibrational mode sensing is the extremely weak infrared absorption of gas species. In this work, we explore the possibility of trapping free gas molecules via surface adsorption, optical, or electrost
Quantum Hall effect (QHE) devices based on epitaxial graphene films grown on SiC were fabricated and studied for development of the QHE resistance standard. The graphene-metal contacting area in the Hall devices has been improved and fabricated using
Using ultrahigh magnetic fields up to 170 T and polarized midinfrared radiation with tunable wavelengths from 9.22 to 10.67 um, we studied cyclotron resonance in large-area graphene grown by chemical vapor deposition. Circular-polarization dependent
Large assemblies of self-organized aluminum nanoclusters embedded in an oxide layer are formed on graphene templates and used to build tunnel-junction devices. Unexpectedly, single-electron-transport behavior with well-defined Coulomb oscillations is