ترغب بنشر مسار تعليمي؟ اضغط هنا

Limit drift

102   0   0.0 ( 0 )
 نشر من قبل Genadi Levin
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the problem of the existence of wild attractors for critical circle covering maps with Fibonacci dynamics.



قيم البحث

اقرأ أيضاً

We study the dynamics of towers defined by fixed points of renormalization for Feigenbaum polynomials in the complex plane with varying order ell of the critical point. It is known that the measure of the Julia set of the Feigenbaum polynomial is pos itive if and only if almost every point tends to 0 under the dynamics of the tower for corresponding ell. That in turn depends on the sign of a quantity called the drift. We prove the existence and key properties of absolutely continuous invariant measures for tower dynamics as well as their convergence when ell tends to infinity. We also prove the convergence of the drifts to a finite limit which can be expressed purely in terms of the limiting tower which corresponds to a Feigenbaum map with a flat critical point
Given an iterated function system of affine dilations with fixed points the vertices of a regular polygon, we characterize which points in the limit set lie on the boundary of its convex hull.
Let $f$ be a $C^{2+epsilon}$ expanding map of the circle and $v$ be a $C^{1+epsilon}$ real function of the circle. Consider the twisted cohomological equation $v(x) = alpha (f(x)) - Df(x) alpha (x)$ which has a unique bounded solution $alpha$. We pro ve that $alpha$ is either $C^{1+epsilon}$ or nowhere differentiable, and if $alpha$ is nowhere differentiable then the Newton quotients of $alpha$, after an appropriated normalization, converges in distribution to the normal distribution, with respect to the unique absolutely continuous invariant probability of $f$.
119 - Wen Huang , Min Ji , Zhenxin Liu 2016
In this paper, we study limit behaviors of stationary measures of the Fokker-Planck equations associated with a system of ordinary differential equations perturbed by a class of multiplicative including additive white noises. As the noises are vanish ing, various results on the invariance and concentration of the limit measures are obtained. In particular, we show that if the noise perturbed systems admit a uniform Lyapunov function, then the stationary measures form a relatively sequentially compact set whose weak$^*$-limits are invariant measures of the unperturbed system concentrated on its global attractor. In the case that the global attractor contains a strong local attractor, we further show that there exists a family of admissible multiplicative noises with respect to which all limit measures are actually concentrated on the local attractor; and on the contrary, in the presence of a strong local repeller in the global attractor, there exists a family of admissible multiplicative noises with respect to which no limit measure can be concentrated on the local repeller. Moreover, we show that if there is a strongly repelling equilibrium in the global attractor, then limit measures with respect to typical families of multiplicative noises are always concentrated away from the equilibrium. As applications of these results, an example of stochastic Hopf bifurcation is provided. Our study is closely related to the problem of noise stability of compact invariant sets and invariant measures of the unperturbed system.
68 - Erik Lundberg 2020
We study the number and distribution of the limit cycles of a planar vector field whose component functions are random polynomials. We prove a lower bound on the average number of limit cycles when the random polynomials are sampled from the Kostlan- Shub-Smale ensemble. For the related Bargmann-Fock ensemble of real analytic functions we establish an asymptotic result for the average number of empty limit cycles (limit cycles that do not surround other limit cycles) in a large viewing window. Concerning the special setting of limit cycles near a randomly perturbed center focus (where the perturbation has i.i.d. coefficients) we prove that the number of limit cycles situated within a disk of radius less than unity converges almost surely to the number of real zeros of a certain random power series. We also consider infinitesimal perturbations where we obtain precise asymptotics on the global count of limit cycles for a family of models. The proofs of these results use novel combinations of techniques from dynamical systems and random analytic functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا