ﻻ يوجد ملخص باللغة العربية
Recently, a series of different measures quantifying memory effects in the quantum dynamics of open systems has been proposed. Here, we derive a mathematical representation for the non-Markovianity measure based on the exchange of information between the open system and its environment which substantially simplifies its numerical and experimental determination, and fully reveals the locality and universality of non-Markovianity in the quantum state space. We further illustrate the application of this representation by means of an all-optical experiment which allows the measurement of the degree of memory effects in a photonic quantum process with high accuracy.
Understanding temporal processes and their correlations in time is of paramount importance for the development of near-term technologies that operate under realistic conditions. Capturing the complete multi-time statistics defining a stochastic proce
Stapps counterfactual argument for quantum nonlocality based upon a Hardy entangled state is shown to be flawed. While he has correctly analyzed a particular framework using the method of consistent histories, there are alternative frameworks which d
Trapped atomic ions enable a precise quantification of the flow of information between internal and external degrees of freedom by employing a non-Markovianity measure [H.-P. Breuer et al., Phys. Rev. Lett. 103, 210401 (2009)]. We reveal that the nat
We study the validity of Landauer principle in the non-Markovian regime by means of collision models where the intracollisions inside the reservoir cause memory effects generating system-environment correlations. We adopt the system-environment corre
Laser control of Open Quantum Systems (OQS) is a challenging issue as compared to its counterpart in isolated small size molecules, basically due to very large numbers of degrees of freedom to be accounted for. Such a control aims at appropriately op