ﻻ يوجد ملخص باللغة العربية
The main aim of the present work is to derive an empirical mass-loss (ML) law for Population II stars in first and second ascent red giant branches. We used the Spitzer InfraRed Array Camera (IRAC) photometry obtained in the 3.6-8 micron range of a carefully chosen sample of 15 Galactic globular clusters spanning the entire metallicity range and sampling the vast zoology of horizontal branch (HB) morphologies. We complemented the IRAC photometry with near-infrared data to build suitable color-magnitude and color-color diagrams and identify mass-losing giant stars. We find that while the majority of stars show colors typical of cool giants, some stars show an excess of mid-infrared light that is larger than expected from their photospheric emission and that is plausibly due to dust formation in mass flowing from them. For these stars, we estimate dust and total (gas + dust) ML rates and timescales. We finally calibrate an empirical ML law for Population II red and asymptotic giant branch stars with varying metallicity. We find that at a given red giant branch luminosity only a fraction of the stars are losing mass. From this, we conclude that ML is episodic and is active only a fraction of the time, which we define as the duty cycle. The fraction of mass-losing stars increases by increasing the stellar luminosity and metallicity. The ML rate, as estimated from reasonable assumptions for the gas-to-dust ratio and expansion velocity, depends on metallicity and slowly increases with decreasing metallicity. In contrast, the duty cycle increases with increasing metallicity, with the net result that total ML increases moderately with increasing metallicity, about 0.1 Msun every dex in [Fe/H]. For Population II asymptotic giant branch stars, we estimate a total ML of <0.1 Msun, nearly constant with varying metallicity.
The amount of mass lost by stars during the red-giant branch (RGB) phase is one of the main parameters to understand and correctly model the late stages of stellar evolution. Nevertheless, a fully-comprehensive knowledge of the RGB mass loss is still
We have observed a sample of 35 long-period variables and four Cepheid variables in the vicinity of 23 Galactic globular clusters using the Infrared Spectrograph on the Spitzer Space Telescope. The long-period variables in the sample cover a range of
We describe the first data release from the Spitzer-IRAC Equatorial Survey (SpIES); a large-area survey of 115 deg^2 in the Equatorial SDSS Stripe 82 field using Spitzer during its warm mission phase. SpIES was designed to probe sufficient volume to
We use Hubble Space Telescope (HST) imaging from the ACS Treasury Survey to determine fits for single population isochrones of 69 Galactic globular clusters. Using robust Bayesian analysis techniques, we simultaneously determine ages, distances, abso
We present the $ugriz$-band Dark Energy Camera (DECam) plus 3.6 and 4.5 $mu$m IRAC catalogs for the Spitzer/HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers $sim24$ deg$^{2}$ of the Sloan Digital Sky Survey (SDSS) Stripe 82 region, with sev