ﻻ يوجد ملخص باللغة العربية
A metastable perovskite BiFe0.5Sc0.5O3 synthesized under high-pressure (6 GPa) and high- temperature (1500 K) conditions was obtained in two different polymorphs, antipolar Pnma and polar Ima2, through an irreversible behaviour under a heating/cooling thermal cycling. The Ima2 phase represents an original type of a canted ferroelectric structure where Bi3+ cations exhibit both polar and antipolar displacements along the orthogonal [110]p and [1-10]p pseudocubic directions, respectively, and are combined with antiphase octahedral tilting about the polar axis. Both the Pnma and Ima2 structural modifications exhibit a long-range antiferromagnetic ordering with a weak-ferromagnetic component below TN ~ 220 K. Analysis of the coupling between the dipole, magnetic and elastic order parameters based on a general phenomenological approach revealed that the weak-ferromagnetism in both phases is mainly caused by the presence of the antiphase octahe- dral tilting whose axial nature directly represents the relevant part of Dzyaloshinskii vector. The magnetoelectric contribution to the spontaneous magnetization allowed in the polar Ima2 phase is described by a fifth-degree free-energy invariant and is expected to be small.
A 20% substitution of Bi with La in the perovskite Bi1-xLaxFe0.5Sc0.5O3 system obtained under high-pressure and high-temperature conditions has been found to induce an incommensurately modulated structural phase. The room temperature X-ray and neutro
Magnetic properties of polycrystalline Sm0.1Ca0.84Sr0.06MnO3 in pristine and metastable states have been investigated in wide range of temperatures and magnetic fields. It was found that below Curie temperature TC = 105 K the pristine state exhibits
Atomically sharp oxide heterostructures often exhibit unusual physical properties that are absent in the constituent bulk materials. The interplay between electrostatic boundary conditions, strain and dimensionality in ultrathin epitaxial films can r
Magnetic structures and the relationship between spin and charge-orbital orderings of an A-site ordered double-perovskite manganite SmBaMn2O6, an anticipated multiferroic material, were investigated by means of neutron diffraction. The spin arrangeme
In oxide heterostructures, different materials are integrated into a single artificial crystal, resulting in a breaking of inversion-symmetry across the heterointerfaces. A notable example is the interface between polar and non-polar materials, where