ﻻ يوجد ملخص باللغة العربية
We construct a supergravity model whose scalar degrees of freedom arise from a chiral superfield and are solely a scalaron and an axion that is very heavy during the inflationary phase. The model includes a second chiral superfield $X$, which is subject however to the constraint $X^2=0$ so that it describes only a Volkov - Akulov goldstino and an auxiliary field. We also construct the dual higher - derivative model, which rests on a chiral scalar curvature superfield ${cal R}$ subject to the constraint ${cal R}^2=0$, where the goldstino dual arises from the gauge - invariant gravitino field strength as $gamma^{mn} {cal D}_m psi_n$. The final bosonic action is an $R+R^2$ theory involving an axial vector $A_m$ that only propagates a physical pseudoscalar mode.
A scale invariant Goldstino theory coupled to Supergravity is obtained as a standard supergravity dual of a rigidly scale invariant higher--curvature Supergravity with a nilpotent chiral scalar curvature. The bosonic part of this theory describes a m
The minimal Starobinsky supergravity with the inflaton (scalaron) and the goldstino in a massive vector supermultiplet is coupled to the dilaton-axion chiral superfield with the no-scale Kahler potential and a superpotential. The Kachru-Kallosh-Linde
In the N=1 four-dimensional new-minimal supergravity framework, we supersymmetrise the coupling of the scalar kinetic term to the Einstein tensor. This coupling, although introduces a non-minimal derivative interaction of curvature to matter, it does
We show that the two-dimensional $N=(2,2)$ Volkov-Akulov action that describes the spontaneous breaking of supersymmetry is a $Tbar{T}$ deformation of a free fermionic theory. Our findings point toward a possible relation between nonlinear supersymmetry and $T bar T$ flows.
The Planck value of the spectral index can be interpreted as $n_s = 1 - 2/N$ in terms of the number of e-foldings $N$. An appealing explanation for this phenomenological observation is provided by $alpha$-attractors: the inflationary predictions of t