ﻻ يوجد ملخص باللغة العربية
We study teleparallel gravity in five-dimensional spacetime with particular discussions on Kaluza-Klein (KK) and braneworld theories. We directly perform the dimensional reduction by differential forms. In the braneworld theory, the teleparallel gravity formalism in the Friedmann-Lema^{i}tre-Robertson-Walker cosmology is equivalent to GR due to the same Friedmann equation, whereas in the KK case the reduction of our formulation does not recover the effect as GR of 4-dimensional spacetime.
There is a growing interest in modified gravity theories based on torsion, as these theories exhibit interesting cosmological implications. In this work, inspired by the teleparallel formulation of general relativity, we present its extension to Love
Pure gauge theories for de Sitter, anti de Sitter and orthogonal groups, in four-dimensional Euclidean spacetime, are studied. It is shown that, if the theory is asymptotically free and a dynamical mass is generated, then an effective geometry may be induced and a gravity theory emerges.
We revisit the problem of the bulk-boundary unitarity clash in 2 + 1 dimensional gravity theories, which has been an obstacle in providing a viable dual two-dimensional conformal field theory for bulk gravity in anti-de Sitter (AdS) spacetime. Chiral
We discuss the possibility of a class of gauge theories, in four Euclidean dimensions, to describe gravity at quantum level. The requirement is that, at low energies, these theories can be identified with gravity as a geometrodynamical theory. Specif
A new systematic approach extending the notion of frames to the Palatini scalar-tensor theories of gravity in various dimensions n>2 is proposed. We impose frame transformation induced by the group action which includes almost-geodesic and conformal