ترغب بنشر مسار تعليمي؟ اضغط هنا

Angular Momentum Transfer in Interaction of Laguerre-Gaussian Beams with Atoms and Molecules

391   0   0.0 ( 0 )
 نشر من قبل Pradip Kumar Mondal
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Exchange of orbital angular momentum between Laguerre-Gaussian beam of light and center-of-mass motion of an atom or molecule is well known. We show that orbital angular momentum of light can also be transferred to the internal electronic or rotational motion of an atom or a molecule provided the internal and center-of-mass motions are coupled. However, this transfer does not happen directly to the internal motion, but via center-of-mass motion. If atoms or molecules are cooled down to recoil limit then an exchange of angular momentum between the quantized center-of-mass motion and the internal motion is possible during interaction of cold atoms or molecules with Laguerre-Gaussian beam. The orientation of the exchanged angular momentum is determined by the sign of the winding number of Laguerre-Gaussian beam. We have presented selective results of numerical calculations for the quadrupole transition rates in interaction of Laguerre-Gaussian beam with an atomic Bose-Einstein condensate to illustrate the underlying mechanism of light orbital angular momentum transfer. We discuss how the alignment of diatomic molecules will facilitate to explore the effects of light orbital angular momentum on electronic motion of molecules.



قيم البحث

اقرأ أيضاً

Transfer mechanism of orbital angular moment(OAM) of light to trapped ground-state atoms under paraxial approximation is well known. Here we show how optical OAM of a Laguerre-Gaussian(LG) beam under paraxial approximation can be transferred to trapp ed Rydberg atoms. Optical OAM is shown to be transferable to a Rydberg electronic state in dipole transition. The Gaussian part of the profile of the LG beam, which is generally neglected , is found to have an important effect on the OAM transfer to the Rydberg atoms. Numerical calculations are calculated based on this theory for Rubidium Rydberg atoms trapped in a harmonic potential. Our results exhibit the mixing of final states of different parities.
We report 2D confinement of Rb 87 atoms in a Laguerre-Gaussian laser beam. Changing of the sign of the detuning from the atomic resonance dramatically alters the geometry of the confinement. With the laser detuned to the blue, the atoms are confined to the dark, central node of the Laguerre-Gaussian laser mode. This trapping method leads to low ac Stark shifts to the atomic levels. Alternatively, by detuning the laser to the red of the resonance, we confine atoms to the high intensity outer ring in a multiply-connected, toroidal configuration. We model the confined atoms to determine azimuthal intensity variations of the trapping laser, caused by slight misalignments of the Laguerre-Gaussian mode generating optics.
We report on the first atom interferometer based on Bragg diffraction in a fountain of alkaline-earth atoms, namely $^{88}$Sr. We demonstrate large momentum transfer to the atoms up to eight photon recoils and the use of the interferometer as a gravi meter with a sensitivity $delta g/g=4times 10^{-8}$. Thanks to the special characteristics of strontium atoms for precision measurements, this result opens a new way for experiments in fundamental and applied physics.
Angular momentum plays a central role in a multitude of phenomena in quantum mechanics, recurring in every length scale from the microscopic interactions of light and matter to the macroscopic behavior of superfluids. Vortex beams, carrying intrinsic orbital angular momentum (OAM), are now regularly generated with elementary particles such as photons and electrons, and harnessed for numerous applications including microscopy and communication. Untapped possibilities remain hidden in vortices of non-elementary particles, as their composite structure can lead to coupling of OAM with internal degrees of freedom. However, thus far, the creation of a vortex beam of a non-elementary particle has never been demonstrated experimentally. We present the first vortex beams of atoms and molecules, formed by diffracting supersonic beams of helium atoms and dimers, respectively, off binary masks made from transmission gratings. By achieving large particle coherence lengths and nanometric grating features, we observe a series of vortex rings corresponding to different OAM states in the accumulated images of particles impacting a detector. This method is general and can be applied to most atomic and molecular gases. Our results may open new frontiers in atomic physics, utilizing the additional degree of freedom of OAM to probe collisions and alter fundamental interactions.
Multiply-connected traps for cold, neutral atoms fix vortex cores of quantum gases. Laguerre-Gaussian laser modes are ideal for such traps due to their phase stability. We report theoretical calculations of the Bose-Einstein condensation transition p roperties and thermal characteristics of neutral atoms trapped in multiply connected geometries formed by Laguerre-Gaussian LG{p}{l} beams. Specifically, we consider atoms confined to the anti-node of a LG{0}{1} laser mode detuned to the red of an atomic resonance frequency, and those confined in the node of a blue-detuned LG{1}{1} beam. We compare the results of using the full potential to those approximating the potential minimum with a simple harmonic oscillator potential. We find that deviations between calculations of the full potential and the simple harmonic oscillator can be up to 3%-8% for trap parameters consistent with typical experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا