ترغب بنشر مسار تعليمي؟ اضغط هنا

NuSTAR Discovery of a cyclotron line in KS 1947+300

154   0   0.0 ( 0 )
 نشر من قبل Felix Fuerst
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Felix Fuerst




اسأل ChatGPT حول البحث

We present a spectral analysis of three simultaneous NuSTAR and Swift/XRT observations of the transient Be-neutron star binary KS 1947+300 taken during its outburst in 2013/2014. These broad-band observations were supported by Swift/XRT monitoring snap-shots every 3 days, which we use to study the evolution of the spectrum over the outburst. We find strong changes of the power-law photon index, which shows a weak trend of softening with increasing X-ray flux. The neutron star shows very strong pulsations with a period of P ~ 18.8 s. The 0.8-79 keV broad-band spectrum can be described by a power-law with an exponential cutoff and a black-body component at low energies. During the second observation we detect a cyclotron resonant scattering feature at 12.5 keV, which is absent in the phase-averaged spectra of observations 1 and 3. Pulse phase-resolved spectroscopy reveals that the strength of the feature changes strongly with pulse phase and is most prominent during the broad minimum of the pulse profile. At the same phases the line also becomes visible in the first and third observation at the same energy. This discovery implies that KS 1947+300 has a magnetic field strength of B ~ 1.1e12 (1+z)G, which is at the lower end of known cyclotron line sources.



قيم البحث

اقرأ أيضاً

We report on the timing and spectral analysis of two Suzaku observations with different flux levels of the high-mass X-ray binary KS 1947+300 during its 2013 outburst. In agreement with simultaneous NuSTAR observations, the continuum is well describe d by an absorbed power law with a cut-off and an additional black body component. In addition we find fluorescent emission from neutral, He-like, and even H-like iron. We determine a pulse period of ~18.8 s with the source showing a spin-up between the two observations. Both Suzaku observations show a very similar behavior of the pulse profile, which is strongly energy dependent, with an evolution from a profile with one peak at low energies to a profile with two peaks of different widths towards higher energies seen in both, the Suzaku and NuSTAR data. Such an evolution to a more complex profile at higher energies is rarely seen in X-ray pulsars, most cases show the opposite behavior. Pulse phase-resolved spectral analysis shows a variation in the absorbing column density, NH , over pulse phase. Spectra taken during the pulse profile minima are intrinsically softer compared to the pulse phase-averaged spectrum.
372 - Felix Fuerst 2013
We present NuSTAR observations of Vela X-1, a persistent, yet highly variable, neutron star high-mass X-ray binary (HMXB). Two observations were taken at similar orbital phases but separated by nearly a year. They show very different 3-79 keV flux le vels as well as strong variability during each observation, covering almost one order of magnitude in flux. These observations allow, for the first time ever, investigations on kilo-second time-scales of how the centroid energies of cyclotron resonant scattering features (CRSFs) depend on flux for a persistent HMXB. We find that the line energy of the harmonic CRSF is correlated with flux, as expected in the sub-critical accretion regime. We argue that Vela X-1 has a very narrow accretion column with a radius of around 0.4 km that sustains a Coulomb interaction dominated shock at the observed luminosities of Lx ~ 3x10^36 erg/s. Besides the prominent harmonic line at 55 keV the fundamental line around 25 keV is clearly detected. We find that the strengths of the two CRSFs are anti-correlated, which we explain by photon spawning. This anti-correlation is a possible explanation for the debate about the existence of the fundamental line. The ratio of the line energies is variable with time and deviates significantly from 2.0, also a possible consequence of photon spawning, which changes the shape of the line. During the second observation, Vela X-1 showed a short off-state in which the power-law softened and a cut-off was no longer measurable. It is likely that the source switched to a different accretion regime at these low mass accretion rates, explaining the drastic change in spectral shape.
147 - Arash Bodaghee 2016
The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by NuSTAR in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of 29.3(+1.1/-1.3) keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5+/-0.1)e12 G. The known pulsation period is now observed at 904.0+/-0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of P = -2e-8 s/s (-0.6 s per year, or a frequency derivative of nu = 3e-14 Hz/s ). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly in corotation with the neutron star whose magnetospheric radius is around 2e8 cm.
We report results of a spectral and timing analysis of the poorly studied transient X-ray pulsar 2S 1553-542 using data collected with the NuSTAR and Chandra observatories and the Fermi/GBM instrument during an outburst in 2015. Properties of the sou rce at high energies (>30 keV) are studied for the first time and the sky position had been essentially improved. The source broadband spectrum has a quite complicated shape and can be reasonably described by a composite model with two continuum components - a black body emission with the temperature about 1 keV at low energies and a power law with an exponential cutoff at high energies. Additionally an absorption feature at $sim23.5$ keV is discovered both in phase-averaged and phase-resolved spectra and interpreted as the cyclotron resonance scattering feature corresponding to the magnetic field strength of the neutron star $Bsim3times10^{12}$ G. Based on the Fermi/GBM data the orbital parameters of the system were substantially improved, that allowed us to determine the spin period of the neutron star P = 9.27880(3) s and a local spin-up $dot P simeq -7.5times10^{-10}$ s s$^{-1}$ due to the mass accretion during the NuSTAR observations. Assuming accretion from the disk and using standard torque models we have estimated the distance to the system $d=20pm4$ kpc.
We present spectral and timing analysis of NuSTAR observations of RX J0520.5$-$6932 in the 3-79 keV band collected during its outburst in January 2014. The target was observed on two epochs and we report the detection of a cyclotron resonant scatteri ng feature with central energies of $E_mathrm{CRSF} = 31.3_{-0.7}^{+0.8}$ keV and $31.5_{-0.6}^{+0.7}$ keV during the two observations, respectively, corresponding to a magnetic field of $B approx 2 times10^{12}$ G. The 3-79 keV luminosity of the system during the two epochs assuming a nominal distance of 50 kpc was $3.667pm0.007times 10^{38},mathrm{erg,s^{-1}}$ and $3.983pm0.007times10^{38},mathrm{erg,s^{-1}}$. Both values are much higher than the critical luminosity of $approx1.5times10^{37},mathrm{erg,s^{-1}}$ above which a radiation dominated shock front may be expected. This adds a new object to the sparse set of three systems that have a cyclotron line observed at luminosities in excess of $10^{38},mathrm{erg,s^{-1}}$. A broad ($sigmaapprox0.45$ keV) Fe emission line is observed in the spectrum at a central energy of $6.58_{-0.05}^{+0.05}$ keV in both epochs. The pulse profile of the pulsar was observed to be highly asymmetric with a sharply rising and slowly falling profile of the primary peak. We also observed minor variations in the cyclotron line energy and width as a function of the rotation phase.% As in observations of other cyclotron absorption line sources, there is a small ($Deltaphilesssim0.1$) phase difference between the peak of the cyclotron energy variation and the peak of the flux variation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا