ﻻ يوجد ملخص باللغة العربية
A topological crystalline insulator (TCI) is a new phase of topological matter, which is predicted to exhibit distinct topological quantum phenomena, since space group symmetries replace the role of time-reversal symmetry in the much-studied Z$_2$ topological insulators. Utilizing high-resolution angle-resolved photoemission spectroscopy (ARPES), we reveal the momentum space nature of interconnectivity of the Fermi surface pockets leading to a saddle point singularity within the topological surface state alone in the TCI Pb$_{0.7}$Sn$_{0.3}$Se. Moreover, we show that the measured momentum-integrated density of states exhibits pronounced peaks at the saddle point energies, demonstrating the van Hove singularities (VHSs) in the topological surface states, whose surface chemical potential, as we show, can be tuned via surface chemical gating, providing access to the topological correlated physics on the surface. Our experimental data reveal a delicate relationship among lattice constant, band gap and spin-orbit coupling strength associated with the topological phase transition in Pb$_{1-x}$Sn$_{x}$Se. Furthermore, we explore the robustness of the TCI phase with VHS in Pb$_{1-x}$Sn$_{x}$Se, which shows a variety of distinct topological phase transitions driven by either thermal instability or broken crystalline symmetry, and thus revealing a rich topological phase diagram connectivity in Pb$_{1-x}$Sn$_{x}$Se for the first time.
We report the evolution of the surface electronic structure and surface material properties of a topological crystalline insulator (TCI) Pb1-xSnxSe as a function of various material parameters including composition x, temperature T and crystal struct
A Z2 topological insulator protected by time-reversal symmetry is realized via spin-orbit interaction driven band inversion. For example, the topological phase in the Bi-Sb system is due to an odd number of band
Saddle-point van Hove singularities in the topological surface states are interesting because they can provide a new pathway for accessing exotic correlated phenomena in topological materials. Here, based on first-principles calculations combined wit
The recently discovered three dimensional or bulk topological insulators are expected to exhibit exotic quantum phenomena. It is believed that a trivial insulator can be twisted into a topological state by modulating the spin-orbit interaction or the crystal lattice via odd number of band
We present a novel 3D topological insulator, termed the Takagi topological insulator (TTI), which is protected by the sublattice symmetry and spacetime inversion symmetry. The symmetries enable the Takagi factorization in the Hamiltonian space. Due t