ﻻ يوجد ملخص باللغة العربية
New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter theta_{23}. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57 x 10^{20} protons on target, T2K has fit the energy-dependent nu_mu oscillation probability to determine oscillation parameters. Marginalizing over the values of other oscillation parameters yields sin^2 (theta_{23}) = 0.514 +0.055/-0.056 (0.511 +- 0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Delta m^2_{32} = (2.51 +- 0.10) x 10^{-3} eV^2/c^4 (inverted hierarchy: Delta m^2_{13} = (2.48 +- 0.10) x 10^{-3} eV^2/c^4). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.
The T2K collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Su
We report a measurement of muon-neutrino disappearance in the T2K experiment. The 295-km muon-neutrino beam from Tokai to Kamioka is the first implementation of the off-axis technique in a long-baseline neutrino oscillation experiment. With data corr
This Letter reports new results on muon neutrino disappearance from NOvA, using a 14 kton detector equivalent exposure of $6.05times10^{20}$ protons-on-target from the NuMI beam at the Fermi National Accelerator Laboratory. The measurement probes the
The T2K experiment observes indications of $ u_murightarrow u_e$ appearance in data accumulated with $1.43times10^{20}$ protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario wi
In study of muon neutrino disappearance at 810 km, the NOvA experiment finds flavor mixing of the atmospheric sector to deviate from maximal ($sin^2theta_{23} = 0.5$) by 2.6 $sigma$. The result is in tension with the 295-km baseline measurements of T