ﻻ يوجد ملخص باللغة العربية
We probe the structure and composition of the atmospheres of 5 hot Jupiter exoplanets using the Hubble Space Telescope Wide Field Camera 3 (WFC3) instrument. We use the G141 grism (1.1-1.7 $mu$m) to study TrES-2b, TrES-4b, and CoRoT-1b in transit, TrES-3b in secondary eclipse, and WASP-4b in both. This wavelength region includes a predicted absorption feature from water at 1.4 $mu$m, which we expect to be nondegenerate with the other molecules that are likely to be abundant for hydrocarbon-poor (e.g. solar composition) hot Jupiter atmospheres. We divide our wavelength regions into 10 bins. For each bin we produce a spectrophotometric light curve spanning the time of transit and/or eclipse. We correct these light curves for instrumental systematics without reference to an instrument model. For our transmission spectra, our mean $1-sigma$ precision per bin corresponds to variations of 2.1, 2.8, and 3.0 atmospheric scale heights for TrES-2b, TrES-4b, and CoRoT-1b, respectively. We find featureless spectra for these three planets. We are unable to extract a robust transmission spectrum for WASP-4b. For our dayside emission spectra, our mean $1-sigma$ precision per bin corresponds to a planet-to-star flux ratio of $1.5times10^{-4}$ and $2.1times10^{-4}$ for WASP-4b and TrES-3b, respectively. We combine these estimates with previous broadband measurements and conclude that for both planets isothermal atmospheres are disfavored. We find no signs of features due to water. We confirm that WFC3 is suitable for studies of transiting exoplanets, but in staring mode multi-visit campaigns are necessary to place strong constraints on water abundance.
We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope to determine the Hubble constant (H0) from optical and infrared observations of over 600 Cepheid variables in the host galaxies of 8 recent Type Ia supernovae (SNe Ia), providing the
We present here our observations and analysis of the dayside emission spectrum of the hot Jupiter WASP-103b. We observed WASP-103b during secondary eclipse using two visits of the Hubble Space Telescope with the G141 grism on Wide Field Camera 3 in s
Exoplanetary transmission spectroscopy in the near-infrared using Hubble/NICMOS is currently ambiguous because different observational groups claim different results from the same data, depending on their analysis methodologies. Spatial scanning with
We present Hubble Space Telescope near-infrared transmission spectroscopy of the transiting hot-Jupiter HAT-P-1b. We observed one transit with Wide Field Camera 3 using the G141 low-resolution grism to cover the wavelength range 1.087- 1.678 {mu}m. T
We present an overview of a 90-orbit Hubble Space Telescope treasury program to obtain near ultraviolet imaging of the Hubble Ultra Deep Field using the Wide Field Camera 3 UVIS detector with the F225W, F275W, and F336W filters. This survey is design