ترغب بنشر مسار تعليمي؟ اضغط هنا

The Supernova Remnant W44: confirmations and challenges for cosmic-ray acceleration

156   0   0.0 ( 0 )
 نشر من قبل Martina Cardillo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The middle-aged supernova remnant (SNR) W44 has recently attracted attention because of its relevance regarding the origin of Galactic cosmic-rays. The gamma-ray missions AGILE and Fermi have established, for the first time for a SNR, the spectral continuum below 200 MeV which can be attributed to neutral pion emission. Confirming the hadronic origin of the gamma-ray emission near 100 MeV is then of the greatest importance. Our paper is focused on a global re-assessment of all available data and models of particle acceleration in W44, with the goal of determining on a firm ground the hadronic and leptonic contributions to the overall spectrum. We also present new gamma-ray and CO NANTEN2 data on W44, and compare them with recently published AGILE and Fermi data. Our analysis strengthens previous studies and observations of the W44 complex environment and provides new information for a more detailed modeling. In particular, we determine that the average gas density of the regions emitting 100 MeV - 10 GeV gamma-rays is relatively high (n= 250 - 300 cm^-3). The hadronic interpretation of the gamma-ray spectrum of W44 is viable, and supported by strong evidence. It implies a relatively large value for the average magnetic field (B > 10^2 microG) in the SNR surroundings, sign of field amplification by shock-driven turbulence. Our new analysis establishes that the spectral index of the proton energy distribution function is p1 = 2.2 +/- 0.1 at low energies and p2 = 3.2 +/- 0.1 at high energies. We critically discuss hadronic versus leptonic-only models of emission taking into account simultaneously radio and gamma-ray data. We find that the leptonic models are disfavored by the combination of radio and gamma-ray data. Having determined the hadronic nature of the gamma-ray emission on firm ground, a number of theoretical challenges remains to be addressed.



قيم البحث

اقرأ أيضاً

Recent observations of the supernova remnant W44 by the emph{Fermi} spacecraft observatory strongly support the idea that the bulk of galactic cosmic rays is accelerated in such remnants by a Fermi mechanism, also known as diffusive shock acceleratio n. However, the W44 expands into weakly ionized dense gas, and so a significant revision of the mechanism is required. In this paper we provide the necessary modifications and demonstrate that strong ion-neutral collisions in the remnant surrounding lead to the steepening of the energy spectrum of accelerated particles by emph{exactly one power}. The spectral break is caused by Alfven wave evanescence leading to the fractional particle losses. The gamma-ray spectrum generated in collisions of the accelerated protons with the ambient gas is also calculated and successfully fitted to the Fermi Observatory data. The parent proton spectrum is best represented by a classical test particle power law E^-2, steepening to E^-3 at E_br~7GeV due to deteriorated particle confinement.
Balmer emission may be a powerful diagnostic tool to test the paradigm of cosmic ray (CR) acceleration in young supernova remnant (SNR) shocks. The width of the broad Balmer line is a direct indicator of the downstream plasma temperature. In case of efficient particle acceleration an appreciable fraction of the total kinetic energy of the plasma is channeled into CRs, therefore the downstream temperature decreases and so does the broad Balmer line width. This width also depends on the level of thermal equilibration between ions and neutral hydrogen atoms in the downstream. Since in general in young SNR shocks only a few charge exchange (CE) reactions occur before ionization, equilibration between ions and neutrals is not reached, and a kinetic description of the neutrals is required in order to properly compute Balmer emission. We provide a method for the calculation of Balmer emission using a self-consistent description of the shock structure in the presence of neutrals and CRs. We use a recently developed semi-analytical approach, where neutral particles, ionized plasma, accelerated particles and magnetic fields are all coupled together through the mass, momentum and energy flux conservation equations. The distribution of neutrals is obtained from the full Boltzmann equation in velocity space, coupled to Maxwellian ions through ionization and CE processes. The computation is also improved with respect to previous work thanks to a better approximation for the atomic interaction rates. We find that for shock speeds >2500km/s the distribution of broad neutrals never approaches a Maxwellian and its moments differ from those of the ionized component. These differences reflect into a smaller FWHM than predicted in previous calculations, where thermalization was assumed. The method presented here provides a realistic estimate of particle acceleration efficiency in Balmer dominated shocks.
104 - S. Recchia , S. Gabici 2017
In the last few years several experiments have shown that the cosmic ray spectrum below the knee is not a perfect power-law. In particular, the proton and helium spectra show a spectral hardening by ~ 0.1-0.2 in spectral index at particle energies of ~ 200-300 GeV/nucleon. Moreover, the helium spectrum is found to be harder than that of protons by ~ 0.1 and some evidence for a similar hardening was also found in the spectra of heavier elements. Here we consider the possibility that the hardening may be the result of a dispersion in the slope of the spectrum of cosmic rays accelerated at supernova remnant shocks. Such a dispersion is indeed expected within the framework of non-linear theories of diffusive shock acceleration, which predict steeper (harder) particle spectra for larger (smaller) cosmic ray acceleration efficiencies.
We report new features of the typical mixed-morphology (MM) supernova remnant (SNR) W44. In the X-ray spectra obtained with Suzaku, radiative recombination continua (RRCs) of highly ionized atoms are detected for the first time. The spectra are well reproduced by a thermal plasma in a recombining phase. The best-fit parameters suggest that the electron temperature of the shock-heated matters cooled down rapidly from $sim1$,keV to $sim 0.5$,keV, possibly due to adiabatic expansion (rarefaction) occurred $sim20,000$ years ago. We also discover hard X-ray emission which shows an arc-like structure spatially-correlated with a radio continuum filament. The surface brightness distribution shows a clear anti-correlation with $^{12}$CO (J=2-1) emission from a molecular cloud observed with NANTEN2. While the hard X-ray is most likely due to a synchrotron enhancement in the vicinity of the cloud, no current model can quantitatively predict the observed flux.
In the past few years, gamma-ray astronomy has entered a golden age. At TeV energies, only a handful of sources were known a decade ago, but the current generation of ground-based imaging atmospheric Cherenkov telescopes has increased this number to more than one hundred. At GeV energies, the Fermi Gamma-ray Space Telescope has increased the number of known sources by nearly an order of magnitude in its first 2 years of operation. The recent detection and unprecedented morphological studies of gamma-ray emission from shell-type supernova remnants is of great interest, as these analyses are directly linked to the long standing issue of the origin of the cosmic-rays. However, these detections still do not constitute a conclusive proof that supernova remnants accelerate the bulk of Galactic cosmic-rays, mainly due to the difficulty of disentangling the hadronic and leptonic contributions to the observed gamma-ray emission. In this talk, I will review the most relevant cosmic ray related results of gamma ray astronomy concerning supernova remnants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا