ﻻ يوجد ملخص باللغة العربية
We consider the free energy difference restricted to a finite volume for certain pairs of incongruent thermodynamic states (if they exist) in the Edwards-Anderson Ising spin glass at nonzero temperature. We prove that the variance of this quantity with respect to the couplings grows proportionally to the volume in any dimension greater than or equal to two. As an illustration of potential applications, we use this result to restrict the possible structure of Gibbs states in two dimensions.
Studying the jellium model in the Hartree-Fock approximation, Overhauser has shown that spin density waves (SDW) can lower the energy of the Fermi gas, but it is still unknown if these SDW are actually relevant for the phase diagram. In this paper, w
We study the mean-field Ising spin glass model with external field, where the random symmetric couplings matrix is orthogonally invariant in law. For sufficiently high temperature, we prove that the replica-symmetric prediction is correct for the fir
For a one-dimensional spin chain with random local interactions, we prove that many-body localization follows from a physically reasonable assumption that limits the amount of level attraction in the system. The construction uses a sequence of local
We consider the Edwards-Anderson Ising Spin Glass model for non negative temperatures T: We define the natural notion of Boltzmann- Gibbs measure for the Edwards-Anderson spin glass at a given temperature, and of unsatisfied edges. We prove that for
We consider a weakly interacting quantum spin chain with random local interactions. We prove that many-body localization follows from a physically reasonable assumption that limits the extent of level attraction in the statistics of eigenvalues. In a