ﻻ يوجد ملخص باللغة العربية
In this work we conduct a transient heat conduction experiment with an aqueous suspension of nanoparticle disks of Laponite JS, a sol forming grade, using laser light interferometry. The image sequence in time is used to measure thermal diffusivity and thermal conductivity of the suspension. Imaging of the temperature distribution is facilitated by the dependence of refractive index of the suspension on temperature itself. We observe that with the addition of 4 volume % of nano-disks in water, thermal conductivity of the suspension increases by around 30%. A theoretical model for thermal conductivity of the suspension of anisotropic particles by Fricke as well as by Hamilton and Crosser explains the trend of data well. In turn, it estimates thermal conductivity of the Laponite nanoparticle itself, which is otherwise difficult to measure in a direct manner. We also measure viscosity of the nanoparticle suspension using a concentric cylinder rheometer. Measurements are seen to follow quite well, the theoretical relation for viscosity of suspensions of oblate particles that includes up to two particle interaction. This result rules out the presence of clusters of particles in the suspension. The effective viscosity and thermal diffusivity data show that the shape of the particle has a role in determining enhancement of thermophysical properties of the suspension.
We present theoretical calculations for the absorption properties of protein-coated gold nanoparticles on graphene and graphite substrates. As the substrate is far away from nanoparticles, numerical results show that the number of protein bovine seru
Conducting materials typically exhibit either diffusive or ballistic charge transport. However, when electron-electron interactions dominate, a hydrodynamic regime with viscous charge flow emerges (1-13). More stringent conditions eventually yield a
We present a simple method to prove the presence of an organic shell around silver nanoparticles. This method is based on the comparison between optical extinction measurements of isolated nanoparticles and Mie calculations predicting the expected wa
A kinetic Monte Carlo approach is applied to studying shape instability of nanowires that results in their breaking up into chains of nanoparticles. Our approach can be used to explore dynamical features of the process that correspond to experimental
A salient feature of topological phases are surface states and many of the widely studied physical properties are directly tied to their existence. Although less explored, a variety of topological phases can however similarly be distinguished by thei