ﻻ يوجد ملخص باللغة العربية
We present a general scheme for synthesizing a spatially periodic magnetic field, or a magnetic lattice (ML), for ultracold atoms using pulsed gradient magnetic fields. Both the period and the depth of the artificial ML can be tuned, immune to atomic spontaneous emission often encountered in optical lattices. The effective Hamiltonian for our 2-dimensional ML has not been discussed previously in condensed matter physics. Its band structures show interesting features which can support topologically nontrivial phases. The technical requirements for implementing our protocol are readily available in todays cold atom experiments. Realization of our proposal will significantly expand the repertoire for quantum simulation with ultracold atoms.
Studies of cold atom collisions and few-body interactions often require the energy dependence of the scattering phase shift, which is usually expressed in terms of an effective-range expansion. We use accurate coupled-channel calculations on $^{6}$Li
The implementation of the fractional quantum Hall effect in ultracold atomic quantum gases remains, despite substantial advances in the field, a major challenge. Since atoms are electrically neutral, a key ingredient is the generation of sufficiently
Time evolution of spin-orbit-coupled cold atoms in an optical lattice is studied, with a two-band energy spectrum having two avoided crossings. A force is applied such that the atoms experience two consecutive Landau-Zener tunnelings while transversi
In this article we proposed a scheme to generating steady topologically non-trivial artificial spin texture in cold atom systems. An example of generating a texture of charge one skyrmion with Laguerre-Gaussian beam was given. It provides a scheme fo
We have compared different time profiles for the trajectory of the centre of a quadrupole magnetic trap designed for the transport of cold sodium atoms. Our experimental observations show that a smooth profile characterized by an analytical expressio