ﻻ يوجد ملخص باللغة العربية
We present an analysis of the role of feedback in shaping the neutral hydrogen (HI) content of simulated disc galaxies. For our analysis, we have used two realisations of two separate Milky Way-like (~L*) discs - one employing a conservative feedback scheme (MUGS), the other significantly more energetic (MaGICC). To quantify the impact of these schemes, we generate zeroth moment (surface density) maps of the inferred HI distribution; construct power spectra associated with the underlying structure of the simulated cold ISM, in addition to their radial surface density and velocity dispersion profiles. Our results are compared with a parallel, self-consistent, analysis of empirical data from THINGS (The HI Nearby Galaxy Survey). Single power-law fits (P~k^gamma) to the power spectra of the stronger-feedback (MaGICC) runs (over spatial scales corresponding to 0.5 kpc to 20 kpc) result in slopes consistent with those seen in the THINGS sample (gamma = -2.5). The weaker-feedback (MUGS) runs exhibit shallower power law slopes (gamma = -1.2). The power spectra of the MaGICC simulations are more consistent though with a two-component fit, with a flatter distribution of power on larger scales (i.e., gamma = -1.4 for scales in excess of 2 kpc) and a steeper slope on scales below 1 kpc (gamma = -5), qualitatively consistent with empirical claims, as well as our earlier work on dwarf discs. The radial HI surface density profiles of the MaGICC discs show a clear exponential behaviour, while those of the MUGS suite are essentially flat; both behaviours are encountered in nature, although the THINGS sample is more consistent with our stronger (MaGICC) feedback runs.
We study the impact of stellar feedback in shaping the density and velocity structure of neutral hydrogen (HI) in disc galaxies. For our analysis, we carry out $sim 4.6$pc resolution $N$-body+adaptive mesh refinement (AMR) hydrodynamic simulations of
The majority of galactic baryons reside outside of the galactic disk in the diffuse gas known as the circumgalactic medium (CGM). While state-of-the art simulations excel at reproducing galactic disk properties, many struggle to drive strong galactic
The Interstellar Medium (ISM) comprises gases at different temperatures and densities, including ionized, atomic, molecular species, and dust particles. The neutral ISM is dominated by neutral hydrogen and has ionization fractions up to 8%. The conce
We fit the near-infrared to radio spectral energy distributions of a sample of 30 luminous and ultra-luminous infrared galaxies with models that include both starburst and AGN components. The aim of the work was to determine important physical parame
Supernovae are the most energetic stellar events and influence the interstellar medium by their gasdynamics and energetics. By this, both also affect the star formation positively and negatively. In this paper, we review the development of the comple