ترغب بنشر مسار تعليمي؟ اضغط هنا

Planetary Transit Candidates in the CSTAR Field: Analysis of the 2008 Data

179   0   0.0 ( 0 )
 نشر من قبل Songhu Wang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Chinese Small Telescope ARray (CSTAR) is a group of four identical, fully automated, static 14.5 cm telescopes. CSTAR is located at Dome A, Antarctica and covers 20 square degree of sky around the South Celestial Pole. The installation is designed to provide high-cadence photometry for the purpose of monitoring the quality of the astronomical observing conditions at Dome A and detecting transiting exoplanets. CSTAR has been operational since 2008, and has taken a rich and high-precision photometric data set of 10,690 stars. In the first observing season, we obtained 291,911 qualified science frames with 20-second integrations in the i-band. Photometric precision reaches about 4 mmag at 20-second cadence at i=7.5, and is about 20 mmag at i=12. Using robust detection methods, ten promising exoplanet candidates were found. Four of these were found to be giants using spectroscopic follow-up. All of these transit candidates are presented here along with the discussion of their detailed properties as well as the follow-up observations.



قيم البحث

اقرأ أيضاً

Context: CoRoT is a pioneering space mission whose primary goals are stellar seismology and extrasolar planets search. Its surveys of large stellar fields generate numerous planetary candidates whose lightcurves have transit-like features. An extensi ve analytical and observational follow-up effort is undertaken to classify these candidates. Aims: The list of planetary transit candidates from the CoRoT LRa01 star field in the Monoceros constellation towards the Galactic anti-center is presented. The CoRoT observations of LRa01 lasted from 24 October 2007 to 3 March 2008. Methods: 7470 chromatic and 3938 monochromatic lightcurves were acquired and analysed. Instrumental noise and stellar variability were treated with several filtering tools by different teams from the CoRoT community. Different transit search algorithms were applied to the lightcurves. Results: Fifty-one stars were classified as planetary transit candidates in LRa01. Thirty-seven (i.e., 73 % of all candidates) are good planetary candidates based on photometric analysis only. Thirty-two (i.e., 87 % of the good candidates) have been followed-up. At the time of this writing twenty-two cases have been solved and five planets have been discovered: three transiting hot-Jupiters (CoRoT-5b, CoRoT-12b, and CoRoT-21b), the first terrestrial transiting planet (CoRoT-7b), and another planet in the same system (CoRoT-7c, detected by radial velocity survey only). Evidences of another non-transiting planet in the CoRoT-7 system, namely CoRoT-7d, have been recently found.
Context: CoRoT is a pioneering space mission devoted to the analysis of stellar variability and the photometric detection of extrasolar planets. Aims: We present the list of planetary transit candidates detected in the first field observed by CoRoT , IRa01, the initial run toward the Galactic anticenter, which lasted for 60 days. Methods: We analysed 3898 sources in the coloured bands and 5974 in the monochromatic band. Instrumental noise and stellar variability were taken into account using detrending tools before applying various transit search algorithms. Results: Fifty sources were classified as planetary transit candidates and the most reliable 40 detections were declared targets for follow-up ground-based observations. Two of these targets have so far been confirmed as planets, COROT-1b and COROT-4b, for which a complete characterization and specific studies were performed.
560 - Songhu Wang , Hui Zhang , Xu Zhou 2015
The Chinese Small Telescope ARray (CSTAR) is the first telescope facility built at Dome A, Antarctica. During the 2008 observing season, the installation provided long-baseline and high-cadence photometric observations in the i-band for 18,145 target s within 20 deg2 CSTAR field around the South Celestial Pole for the purpose of monitoring the astronomical observing quality of Dome A and detecting various types of photometric variability. Using sensitive and robust detection methods, we discover 274 potential variables from this data set, 83 of which are new discoveries. We characterize most of them, providing the periods, amplitudes and classes of variability. The catalog of all these variables is presented along with the discussion of their statistical properties.
The Chinese Small Telescope ARray (CSTAR) is the first Chinese astronomical instrument placed in Antarctica. It is a group of four identical, fully automatic $14.5,rm{cm}$ telescopes, with an field of view (FOV) of $20,rm{deg^2}$ centered on the Sout h Celestial Pole. Placed at Antarctic Dome A, CSTAR is designed to provide high-cadence photometry for site monitoring and variable sources detection. During the 2008 observing season, CSTAR has taken high-precision photometric data for 18,145 stars around the South Celestial Pole. At $i,=,7.5$ and $12$, the photometric precision reaches $sim 8$ mmag and $sim 30$ mmag with a cadence of 20s or 30s, respectively. Using robust detection method, we have found 15 stellar flares on 13 sources, including two classified variables. We have also found a linear relation between the decay times and the total durations of the stellar flares. The details of all detected flares along with their stellar properties are presented in this work.
New transiting planet candidates are identified in sixteen months (May 2009 - September 2010) of data from the Kepler spacecraft. Nearly five thousand periodic transit-like signals are vetted against astrophysical and instrumental false positives yie lding 1,091 viable new planet candidates, bringing the total count up to over 2,300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multi-quarter photo-center offsets derived from difference image analysis which identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the new candidates. Ephemerides (transit epoch, T_0, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (Rp/R*), reduced semi-major axis (d/R*), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (197% for candidates smaller than 2Re compared to 52% for candidates larger than 2Re) and those at longer orbital periods (123% for candidates outside of 50-day orbits versus 85% for candidates inside of 50-day orbits). The gains are larger than expected from increasing the observing window from thirteen months (Quarter 1-- Quarter 5) to sixteen months (Quarter 1 -- Quarter 6). This demonstrates the benefit of continued development of pipeline analysis software. The fraction of all host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the Habitable Zone are forthcoming if, indeed, such planets are abundant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا