ترغب بنشر مسار تعليمي؟ اضغط هنا

Tools for dynamics simulation of robots: a survey based on user feedback

104   0   0.0 ( 0 )
 نشر من قبل Serena Ivaldi
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The number of tools for dynamics simulation has grown in the last years. It is necessary for the robotics community to have elements to ponder which of the available tools is the best for their research. As a complement to an objective and quantitative comparison, difficult to obtain since not all the tools are open-source, an element of evaluation is user feedback. With this goal in mind, we created an online survey about the use of dynamical simulation in robotics. This paper reports the analysis of the participants answers and a descriptive information fiche for the most relevant tools. We believe this report will be helpful for roboticists to choose the best simulation tool for their researches.



قيم البحث

اقرأ أيضاً

This paper presents a framework that leverages both control theory and machine learning to obtain stable and robust bipedal locomotion without the need for manual parameter tuning. Traditionally, gaits are generated through trajectory optimization me thods and then realized experimentally -- a process that often requires extensive tuning due to differences between the models and hardware. In this work, the process of gait realization via hybrid zero dynamics (HZD) based optimization is formally combined with preference-based learning to systematically realize dynamically stable walking. Importantly, this learning approach does not require a carefully constructed reward function, but instead utilizes human pairwise preferences. The power of the proposed approach is demonstrated through two experiments on a planar biped AMBER-3M: the first with rigid point-feet, and the second with induced model uncertainty through the addition of springs where the added compliance was not accounted for in the gait generation or in the controller. In both experiments, the framework achieves stable, robust, efficient, and natural walking in fewer than 50 iterations with no reliance on a simulation environment. These results demonstrate a promising step in the unification of control theory and learning.
Experimental demonstration of complex robotic behaviors relies heavily on finding the correct controller gains. This painstaking process is often completed by a domain expert, requiring deep knowledge of the relationship between parameter values and the resulting behavior of the system. Even when such knowledge is possessed, it can take significant effort to navigate the nonintuitive landscape of possible parameter combinations. In this work, we explore the extent to which preference-based learning can be used to optimize controller gains online by repeatedly querying the user for their preferences. This general methodology is applied to two variants of control Lyapunov function based nonlinear controllers framed as quadratic programs, which have nice theoretic properties but are challenging to realize in practice. These controllers are successfully demonstrated both on the planar underactuated biped, AMBER, and on the 3D underactuated biped, Cassie. We experimentally evaluate the performance of the learned controllers and show that the proposed method is repeatably able to learn gains that yield stable and robust locomotion.
Soft modular robots enable more flexibility and safer interaction with the changing environment than traditional robots. However, it has remained challenging to create deformable connectors that can be integrated into soft machines. In this work, we propose a flexible connector for soft modular robots based on micropatterned intersurface jamming. The connector is composed of micropatterned dry adhesives made by silicone rubber and a flexible main body with inflatable chambers for active engagement and disengagement. Through connection force tests, we evaluate the characteristics of the connector both in the linear direction and under rotational disruptions. The connector can stably support an average maximum load of 22 N (83 times the connectors body weight) linearly and 10.86 N under planar rotation. The proposed connector demonstrates the potential to create a robust connection between soft modular robots without raising the systems overall stiffness; thus guarantees high flexibility of the robotic system.
In this paper we present a simulation framework for the evaluation of the navigation and localization metrological performances of a robotic platform. The simulator, based on ROS (Robot Operating System) Gazebo, is targeted to a planetary-like resear ch vehicle which allows to test various perception and navigation approaches for specific environment conditions. The possibility of simulating arbitrary sensor setups comprising cameras, LiDARs (Light Detection and Ranging) and IMUs makes Gazebo an excellent resource for rapid prototyping. In this work we evaluate a variety of open-source visual and LiDAR SLAM (Simultaneous Localization and Mapping) algorithms in a simulated Martian environment. Datasets are captured by driving the rover and recording sensors outputs as well as the ground truth for a precise performance evaluation.
Voxel-based structures provide a modular, mechanically flexible periodic lattice which can be used as a soft robot through internal deformations. To engage these structures for robotic tasks, we use a finite element method to characterize the motion caused by deforming single degrees of freedom and develop a reduced kinematic model. We find that node translations propagate periodically along geometric planes within the lattice, and briefly show that translational modes dominate the energy usage of the actuators. The resulting kinematic model frames the structural deformations in terms of user-defined control and end effector nodes, which further reduces the model size. The derived Planes of Motion (POM) model can be equivalently used for forward and inverse kinematics, as demonstrated by the design of a tripod stable gait for a locomotive voxel robot and validation of the quasi-static model through physical experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا