ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy transfer efficiency in the FMO complex strongly coupled to a vibronic mode

106   0   0.0 ( 0 )
 نشر من قبل Lev Mourokh
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using methods of condensed matter and statistical physics, we examine the transport of excitons through the Fenna-Matthews-Olson (FMO) complex from a receiving antenna to a reaction center. Writing the equations of motion for the exciton creation/annihilation operators, we are able to describe the exciton dynamics, even in the regime when the reorganization energy is of the order of the intra-system couplings. In particular, we obtain the well-known quantum oscillations of the site populations. We determine the exciton transfer efficiency in the presence of a quenching field and protein environment. While the majority of the protein vibronic modes are treated as a heat bath, we address the situation when specific modes are strongly coupled to excitons and examine the effects of these modes on the quantum oscillations and the energy transfer efficiency. We find that, for the vibronic frequencies below 16 meV, the exciton transfer is drastically suppressed. We attribute this effect to the formation of polaronic states where the exciton is transferred back and forth between the two pigments with the absorption/emission of the vibronic quanta, instead of proceeding to the reaction center. The same effect suppresses the quantum beating at the vibronic frequency of 25 meV. We also show that the efficiency of the energy transfer can be enhanced when the vibronic mode strongly couples to the third pigment only, instead of coupling to the entire system.



قيم البحث

اقرأ أيضاً

134 - Shu-Hao Yeh , Sabre Kais 2014
The Fenna-Matthews-Olson (FMO) protein-pigment complex acts as a molecular wire between the outer antenna system and the reaction center (RC); it is an important model system to study the excitonic energy transfer. Recent crystallographic studies rep ort the existence of an additional (eighth) bacteriochlorophyll a (BChl a). To understand the functionality of this eighth BChl, we simulated the two-dimensional electronic spectra of both the 7-site (apo form) and the 8-site (holo form) variant of the FMO complex from green sulfur bacteria, Prosthecochloris aestuarii. By comparing the difference between the spectrum, it was found that the eighth BChl can affect two different excitonic energy transfer pathways, these being: (1) directly involve in the first pathway 6 $rightarrow$ 3 $rightarrow$ 1 of the apo form model by passing the excitonic energy to exciton 6; and (2) increase the excitonic wave function overlap between excitons 4 and 5 in the second pathway (7 $rightarrow$ 4,5 $rightarrow$ 2 $rightarrow$ 1) and thus increase the possible downward sampling routes across the BChls.
We show that the efficient excitation energy transfer in the Fenna-Matthews-Olson molecular aggregate under realistic physiological conditions is fueled by underdamped vibrations of the embedding proteins. For this, we present numerically exact resul ts for the quantum dynamics of the excitons in the presence of nonadiabatic vibrational states in the Fenna-Matthews-Olson aggregate employing a environmental fluctuation spectral function derived from experiments. Assuming the prominent 180 cm$^{-1}$ vibrational mode to be underdamped, we observe, on the one hand, besides vibrational coherent oscillations between different excitation levels of the vibration also prolonged electronic coherent oscillations between the initially excited site and its neighbours. On the other hand, however, the underdamped vibrations provide additional channels for the excitation energy transfer and by this increase the transfer speed by up to $30%$ .
We investigate the quantum dynamics of energy and charge transfer in a wheel-shaped artificial photosynthetic antenna-reaction center complex.This complex consists of six light-harvesting chromophores and an electron-acceptor fullerene. To describe q uantum effects on a femtosecond time scale, we derive the set of exact non-Markovian equations for the Heisenberg operators of this photosynthetic complex in contact with a Gaussian heat bath. With these equations we can analyze the regime of strong system-bath interactions, where reorganization energies are of the order of the intersite exciton couplings. We show that the energy of the initially-excited antenna chromophores is efficiently funneled to the porphyrin-fullerene reaction center, where a charge-separated state is set up in a few picoseconds, with a quantum yield of the order of 95%. In the single-exciton regime, with one antenna chromophore being initially excited, we observe quantum beatings of energy between two resonant antenna chromophores with a decoherence time of $sim$ 100 fs. We also analyze the double-exciton regime, when two porphyrin molecules involved in the reaction center are initially excited. In this regime we obtain pronounced quantum oscillations of the charge on the fullerene molecule with a decoherence time of about 20 fs (at liquid nitrogen temperatures). These results show a way to directly detect quantum effects in artificial photosynthetic systems.
The idea that excitonic state (electronic) coherences are of fundamental importance to natural photosynthesis gained popularity when, a decade ago, slowly dephasing quantum beats were observed in the two-dimensional electronic spectra of the Fenna-Ma tthews-Olson complex at 77 K. These were assigned to quantum superpositions of excitonic states; a controversial interpretation, as the spectral linewidths suggested fast dephasing arising from strong interactions with the environment. While it has been pointed out that vibrational motion produces similar spectral signatures, concrete assignment of these coherences to distinct physical processes is still lacking. Here we revisit the coherence dynamics of the Fenna-Matthews-Olson complex using polarization-controlled two-dimensional electronic spectroscopy, supported by theoretical modelling. We show that the long-lived quantum beats originate exclusively from vibrational coherences, whereas electronic coherences dephase entirely within 240 fs even at 77 K - a timescale too short to play a significant role in light harvesting. Additionally, we demonstrate that specific vibrational coherences are excited via vibronically coupled states. The detection of vibronic coupling indicates the relevance of this phenomenon for photosynthetic energy transfer.
A generic and intuitive model for coherent energy transport in multiple minima systems coupled to a quantum mechanical bath is shown. Using a simple spin-boson system, we illustrate how a generic donor-acceptor system can be brought into resonance us ing a narrow band of vibrational modes, such that the transfer efficiency of an electron-hole pair (exciton) is made arbitrarily high. Coherent transport phenomena in nature are of renewed interest since the discovery that a photon captured by the light-harvesting complex (LHC) in photosynthetic organisms can be conveyed to a chemical reaction centre with near-perfect efficiency. Classical explanations of the transfer use stochastic diffusion to model the hopping motion of a photo-excited exciton. This accounts inadequately for the speed and efficiency of the energy transfer measured in a series of recent landmark experiments. Taking a quantum mechanical perspective can help capture the salient features of the efficient part of that transfer. To show the versatility of the model, we extend it to a multiple minima system comprising seven-sites, reminiscent of the widely studied Fenna-Matthews-Olson (FMO) light-harvesting complex. We show that an idealised transport model for multiple minima coupled to a narrow-band phonon can transport energy with arbitrarily high efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا