ترغب بنشر مسار تعليمي؟ اضغط هنا

Residual Finiteness Growths of Virtually Special Groups

208   0   0.0 ( 0 )
 نشر من قبل Priyam Patel
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $G$ be a virtually special group. Then the residual finiteness growth of $G$ is at most linear. This result cannot be found by embedding $G$ into a special linear group. Indeed, the special linear group $text{SL}_k(mathbb{Z})$, for $k > 2$, has residual finiteness growth $n^{k-1}$.



قيم البحث

اقرأ أيضاً

Full residual finiteness growth of a finitely generated group $G$ measures how efficiently word metric $n$-balls of $G$ inject into finite quotients of $G$. We initiate a study of this growth over the class of nilpotent groups. When the last term of the lower central series of $G$ has finite index in the center of $G$ we show that the growth is precisely $n^b$, where $b$ is the product of the nilpotency class and dimension of $G$. In the general case, we give a method for finding an upper bound of the form $n^b$ where $b$ is a natural number determined by what we call a terraced filtration of $G$. Finally, we characterize nilpotent groups for which the word growth and full residual finiteness growth coincide.
121 - Kasia Jankiewicz 2020
We show that many 2-dimensional Artin groups are residually finite. This includes 3-generator Artin groups with labels $geq$ 3 where either at least one label is even, or at most one label is equal 3. As a first step towards residual finiteness we sh ow that these Artin groups, and many more, split as free products with amalgamation or HNN extensions of finite rank free groups. Among others, this holds for all large type Artin groups with defining graph admitting an orientation, where each simple cycle is directed.
103 - Thomas Haettel 2015
We give a conjectural classification of virtually cocompactly cubulated Artin-Tits groups (i.e. having a finite index subgroup acting geometrically on a CAT(0) cube complex), which we prove for all Artin-Tits groups of spherical type, FC type or two- dimensional type. A particular case is that for $n geq 4$, the $n$-strand braid group is not virtually cocompactly cubulated.
We prove that any word hyperbolic group which is virtually compact special (in the sense of Haglund and Wise) is conjugacy separable. As a consequence we deduce that all word hyperbolic Coxeter groups and many classical small cancellation groups are conjugacy separable. To get the main result we establish a new criterion for showing that elements of prime order are conjugacy distinguished. This criterion is of independent interest; its proof is based on a combination of discrete and profinite (co)homology theories.
A function $mathbb{N} to mathbb{N}$ is near exponential if it is bounded above and below by functions of the form $2^{n^c}$ for some $c > 0$. In this article we develop tools to recognize the near exponential residual finiteness growth in groups acti ng on rooted trees. In particular, we show the near exponential residual finiteness growth for certain branch groups, including the first Grigorchuk group, the family of Gupta-Sidki groups and their variations, and Fabrykowski-Gupta groups. We also show that the family of Gupta-Sidki p-groups, for $pgeq 5$, have super-exponential residual finiteness growths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا