We revisit the implementation of the metric-independent Fock-Schwinger gauge in the abelian Chern-Simons field theory defined in ${mathbb{R}}^3$ by means of a homotopy condition. This leads to the lagrangian $F wedge hF$ in terms of curvatures $F$ and of the Poincare homotopy operator $h$. The corresponding field theory provides the same link invariants as the abelian Chern-Simons theory. Incidentally the part of the gauge field propagator which yields the link invariants of the Chern-Simons theory in the Fock-Schwinger gauge is recovered without any computation.