ﻻ يوجد ملخص باللغة العربية
This paper presents a novel design methodology for optimal transmission policies at a smart sensor to remotely estimate the state of a stable linear stochastic dynamical system. The sensor makes measurements of the process and forms estimates of the state using a local Kalman filter. The sensor transmits quantized information over a packet dropping link to the remote receiver. The receiver sends packet receipt acknowledgments back to the sensor via an erroneous feedback communication channel which is itself packet dropping. The key novelty of this formulation is that the smart sensor decides, at each discrete time instant, whether to transmit a quantized version of either its local state estimate or its local innovation. The objective is to design optimal transmission policies in order to minimize a long term average cost function as a convex combination of the receivers expected estimation error covariance and the energy needed to transmit the packets. The optimal transmission policy is obtained by the use of dynamic programming techniques. Using the concept of submodularity, the optimality of a threshold policy in the case of scalar systems with perfect packet receipt acknowledgments is proved. Suboptimal solutions and their structural results are also discussed. Numerical results are presented illustrating the performance of the optimal and suboptimal transmission policies.
This paper presents a design methodology for optimal transmission energy allocation at a sensor equipped with energy harvesting technology for remote state estimation of linear stochastic dynamical systems. In this framework, the sensor measurements as noi
One major challenge in implementation of formation control problems stems from the packet loss that occur in these shared communication channel. In the presence of packet loss the coordination information among agents is lost. Moreover, there is a mo
This paper studies remote state estimation in the presence of an eavesdropper. A sensor transmits local state estimates over a packet dropping link to a remote estimator, while an eavesdropper can successfully overhear each sensor transmission with a
This note studies the use of relays to improve the performance of Kalman filtering over packet dropping links. Packet reception probabilities are governed by time-varying fading channel gains, and the sensor and relay transmit powers. We consider sit
A set of N independent Gaussian linear time invariant systems is observed by M sensors whose task is to provide the best possible steady-state causal minimum mean square estimate of the state of the systems, in addition to minimizing a steady-state m