ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining Majorana CP Phase in Precision Era of Cosmology and Double Beta Decay Experiment

109   0   0.0 ( 0 )
 نشر من قبل Alexander Quiroga
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that precision measurement of (1) sum of neutrino masses by cosmological observation and (2) lifetime of neutrinoless double beta decay in ton-scale experiments, with supplementary use of (3) effective mass measured in single beta decay experiment, would allow us to obtain information on the Majorana phase of neutrinos. To quantify the sensitivity to the phase we use the CP exclusion fraction, a fraction of the CP phase parameter space that can be excluded for a given set of assumed input parameters, a global measure for CP violation. We illustrate the sensitivity under varying assumptions, from modest to optimistic ones, on experimental errors and theoretical uncertainty of nuclear matrix elements. Assuming that the latter can be reduced to a factor of ~1.5 we find that one of the two Majorana phases (denoted as alpha_(21)) can be constrained by excluding ~10-40% of the phase space at 2sigma CL even with the modest choice of experimental error for the lowest neutrino mass of 0.1 eV. The characteristic features of the sensitivity to alpha_(21), such as dependences on the true values of alpha_(21), are addressed.



قيم البحث

اقرأ أيضاً

Neutrino Self-Interactions ($ u$SI) beyond the Standard Model are an attractive possibility to soften cosmological constraints on neutrino properties and also to explain the tension in late and early time measurements of the Hubble expansion rate. Th e required strength of $ u$SI to explain the $4sigma$ Hubble tension is in terms of a point-like effective four-fermion coupling that can be as high as $10^9, G_F$, where $G_F$ is the Fermi constant. In this work, we show that such strong $ u$SI can cause significant effects in two-neutrino double beta decay, leading to an observable enhancement of decay rates and to spectrum distortions. We analyze self-interactions via an effective operator as well as when mediated by a light scalar. Data from observed two-neutrino double beta decay is used to constrain $ u$SI, which rules out the regime around $10^9, G_F$.
70 - S. Pascoli , S. T. Petcov 2001
If the present or upcoming searches for neutrinoless double beta decay give a positive result, the Majorana nature of massive neutrinos will be established. From the determination of the value of the effective Majorana mass parameter |<m>|, it woul d be possible to obtain information on the type of neutrino mass spectrum. Assuming 3-neutrino mixing and massive Majorana neutrinos, we discuss the information a measurement of, or an upper bound on, |<m>| can provide on the value of the lightest neutrino mass m1. With additional data on the neutrino masses obtained in tritium beta decay experiments, it might be possible to establish whether the CP-symmetry is violated in the lepton sector. This would require very high precision measurements. If CP-invariance holds, the allowed patterns of the relative CP-parities of the massive Majorana neutrinos would be determined.
57 - Giovanni Benato 2015
The probability distribution for the effective Majorana mass as a function of the lightest neutrino mass in the standard three neutrino scheme is computed via a random sampling from the distributions of the involved mixing angles and squared mass dif fences. A flat distribution in the [0,2pi] range for the Majorana phases is assumed, and the dependence of small values of the effective mass on the Majorana phases is highlighted. The study is then extended with the addition of the cosmological bound on the sum of the neutrino masses. Finally, the prospects for neutrinoless double beta decay search with 76Ge, 130Te and 136Xe are discussed, as well as those for the measurement of the electron neutrino mass.
The {sc Majorana Demonstrator will search for the neutrinoless double-beta decay of the isotope Ge-76 with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate the neutrino is its own antipartic le, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino. The {sc Demonstrator} is being assembled at the 4850-foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the {sc Demonstrator} and the details of its design.
Taking account of possible CP violation, we discuss about the constraints on the lepton mixing angles from the neutrinoless double beta decay and from the neutrino oscillation for the three flavour Majorana neutrinos. From the CHORUS oscillation expe riment, combined with the data of neutrinoless double beta decay, we show that the large angle solution of (theta_{23}) is improbable if the neutrino mass (m_3) of the third generation is a candidate of hot dark matters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا