ﻻ يوجد ملخص باللغة العربية
In this paper we propose a generalization of the extension complexity of a polyhedron $Q$. On the one hand it is general enough so that all problems in $P$ can be formulated as linear programs with polynomial size extension complexity. On the other hand it still allows non-polynomial lower bounds to be proved for $NP$-hard problems independently of whether or not $P=NP$. The generalization, called $H$-free extension complexity, allows for a set of valid inequalities $H$ to be excluded in computing the extension complexity of $Q$. We give results on the $H$-free extension complexity of hard matching problems (when $H$ are the odd set inequalities) and the traveling salesman problem (when $H$ are the subtour elimination constraints).
In this article we undertake a study of extension complexity from the perspective of formal languages. We define a natural way to associate a family of polytopes with binary languages. This allows us to define the notion of extension complexity of fo
The question if a given partial solution to a problem can be extended reasonably occurs in many algorithmic approaches for optimization problems. For instance, when enumerating minimal dominating sets of a graph $G=(V,E)$, one usually arrives at the
It is known that the extension complexity of the TSP polytope for the complete graph $K_n$ is exponential in $n$ even if the subtour inequalities are excluded. In this article we study the polytopes formed by removing other subsets $mathcal{H}$ of fa
Let $G$ be a graph on $n$ vertices and $mathrm{STAB}_k(G)$ be the convex hull of characteristic vectors of its independent sets of size at most $k$. We study extension complexity of $mathrm{STAB}_k(G)$ with respect to a fixed parameter $k$ (analogous
This paper is aimed to investigate some computational aspects of different isoperimetric problems on weighted trees. In this regard, we consider different connectivity parameters called {it minimum normalized cuts}/{it isoperimteric numbers} defined