ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-temperature heat transport of the geometrically frustrated antiferromagnets R_2Ti_2O_7 (R = Gd and Er)

166   0   0.0 ( 0 )
 نشر من قبل X. F. Sun
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a systematic study on the low-temperature thermal conductivity (kappa) of R_2Ti_2O_7 (R = Gd and Er) single crystals with different directions of magnetic field and heat current. It is found that the magnetic excitations mainly act as phonon scatterers rather than heat carriers, although these two materials have long-range magnetic orders at low temperatures. The low-T kappa(H) isotherms of both compounds show rather complicated behaviors and have good correspondences with the magnetic transitions, where the kappa(H) curves show drastic dip- or step-like changes. In comparison, the field dependencies of kappa are more complicated in Gd_2Ti_2O_7, due to the complexity of its low-T phase diagram and field-induced magnetic transitions. These results demonstrate the significant coupling between spins and phonons in these materials and the ability of heat-transport properties probing the magnetic transitions.



قيم البحث

اقرأ أيضاً

The nature of the low temperature ground state of the pyrochlore compound Tb2Ti2O7 remains a puzzling issue. Dynamic fluctuations and short-range correlations persist down to 50 mK, as evidenced by microscopic probes. In parallel, magnetization measu rements show irreversibilities and glassy behavior below 200 mK. We have performed magnetization and AC susceptibility measurements on four single crystals down to 57 mK. We did not observe a clear plateau in the magnetization as a function of field along the [111] direction, as suggested by the quantum spin ice model. In addition to a freezing around 200 mK, slow dynamics are observed in the AC susceptibility up to 4 K. The overall frequency dependence cannot be described by a canonical spin-glass behavior.
The borocarbides RNi2B2C (R=Gd, Ho, Er) exhibit a large variety of magnetic states and as a consequence rich phase diagrams. We have analyzed the nature of these states by specific heat investigations. The data were measured down to 0.5 K and up to 8 0 kOe. The overall evolution of each Cm(T,H) curve is observed to reflect faithfully the features of the corresponding H-T phase diagram. Within the lower ranges of temperature and fields, the calculations based on linearized field-dependent spin-wave theory are found to reproduce satisfactorily the measured Cm(T,H) curves: accordingly, within these ranges, the thermodynamical properties of these compounds can be rationalized in terms of only two parameters: the spin-wave energy gap and the stiffness coefficient. For the intermediate fields ranges (H1<H<Hsat) wherein successive field-induced metamagnetic modes are stabilized, the evolution of Cm(T,H) is discussed in terms of the Maxwell relation (dCm/dH)T=T(d^2M/dT^2)H. For the particular case of GdNi2B2C wherein the anisotropy is dictated by the classical dipole interaction, Cm(T,H) across the whole ordered state is numerically evaluated within the model of Jensen and Rotter [PRB 77 (2008) 134408].
416 - N. Qureshi , A. Wildes , C. Ritter 2021
We report the low-temperature properties of SrNd$_2$O$_4$, a geometrically frustrated magnet. Magnetisation and heat capacity measurements performed on polycrystalline samples indicate the appearance of a magnetically ordered state at $T_{rm N}=2.28( 4)$~K. Powder neutron diffraction measurements reveal that an afm state with the propagation vector QV is stabilised below this temperature. The magnetic order is incomplete, as only one of the two Nd$^{3+}$ sites carries a significant magnetic moment while the other site remains largely disordered. The presence of a disordered magnetic component below $T_{rm N}$ is confirmed with polarised neutron diffraction measurements. In an applied magnetic field, the bulk properties measurements indicate a phase transition at about 30~kOe. We construct a tentative $H$-$T$ phase diagram of sno from these measurements.
132 - K. Berggold , T. Lorenz , J. Baier 2005
We have studied the thermal conductivity $kappa$ on single crystalline samples of the antiferromagnetic monolayer cuprates R$_2$CuO$_4$ with R = La, Pr, Nd, Sm, Eu, and Gd. For a heat current within the CuO$_2$ planes, i.e. for $kappa_{ab}$ we find h igh-temperature anomalies around 250 K in all samples. In contrast, the thermal conductivity $kappa_c$ perpendicular to the CuO$_2$ planes, which we measured for R = La, Pr, and Gd, shows a conventional temperature dependence as expected for a purely phononic thermal conductivity. This qualitative anisotropy of $kappa_i$ and the anomalous temperature dependence of $kappa_{ab}$ give evidence for a significant magnetic contribution $kappa_{mag}$ to the heat transport within the CuO$_2$ planes. Our results suggest, that a large magnetic contribution to the heat current is a common feature of single-layer cuprates. We find that $kappa_{mag}$ is hardly affected by structural instabilities, whereas already weak charge carrier doping causes a strong suppression of $kappa_{mag}$.
We theoretically study finite temperature properties of interacting fermion systems under geometrical frustration in the charge degree of freedom. Physical quantities such as charge structure factors, the specific heat, and the entropy, of the two-di mensional model of interacting spinless fermions on an anisotropic triangular lattice are numerically calculated using the thermal pure quantum state. By considering the Coulomb interactions up to the next-nearest-neighbor bonds, we elucidate that in the highly frustrated region where a long-period stripe-type charge order (CO) is the ground state, fluctuations of different stripe-type CO patterns become large at finite temperatures. When we further introduce $1/r$-type long-range Coulomb interactions, the ground state unexpectedly recovers the non-stripe-type 3-fold CO pattern characteristic of triangular lattice models with short-range interactions. Our results imply that the BEDT-TTF-based organic conductors exhibiting glass-like behavior locates in the region of the intermediate strength of long-range interactions, where both the stripe- and non-stripe-type CO fluctuations are prominent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا