ﻻ يوجد ملخص باللغة العربية
Functional data, with basic observational units being functions (e.g., curves, surfaces) varying over a continuum, are frequently encountered in various applications. While many statistical tools have been developed for functional data analysis, the issue of smoothing all functional observations simultaneously is less studied. Existing methods often focus on smoothing each individual function separately, at the risk of removing important systematic patterns common across functions. We propose a nonparametric Bayesian approach to smooth all functional observations simultaneously and nonparametrically. In the proposed approach, we assume that the functional observations are independent Gaussian processes subject to a common level of measurement errors, enabling the borrowing of strength across all observations. Unlike most Gaussian process regression models that rely on pre-specified structures for the covariance kernel, we adopt a hierarchical framework by assuming a Gaussian process prior for the mean function and an Inverse-Wishart process prior for the covariance function. These prior assumptions induce an automatic mean-covariance estimation in the posterior inference in addition to the simultaneous smoothing of all observations. Such a hierarchical framework is flexible enough to incorporate functional data with different characteristics, including data measured on either common or uncommon grids, and data with either stationary or nonstationary covariance structures. Simulations and real data analysis demonstrate that, in comparison with alternative methods, the proposed Bayesian approach achieves better smoothing accuracy and comparable mean-covariance estimation results. Furthermore, it can successfully retain the systematic patterns in the functional observations that are usually neglected by the existing functional data analyses based on individual-curve smoothing.
We propose modeling raw functional data as a mixture of a smooth function and a highdimensional factor component. The conventional approach to retrieving the smooth function from the raw data is through various smoothing techniques. However, the smoo
In spatial statistics, it is often assumed that the spatial field of interest is stationary and its covariance has a simple parametric form, but these assumptions are not appropriate in many applications. Given replicate observations of a Gaussian sp
Incorporating covariate information into functional data analysis methods can substantially improve modeling and prediction performance. However, many functional data analysis methods do not make use of covariate or supervision information, and those
In modern contexts, some types of data are observed in high-resolution, essentially continuously in time. Such data units are best described as taking values in a space of functions. Subject units carrying the observations may have intrinsic relation
Functional data are defined as realizations of random functions (mostly smooth functions) varying over a continuum, which are usually collected with measurement errors on discretized grids. In order to accurately smooth noisy functional observations