ترغب بنشر مسار تعليمي؟ اضغط هنا

Ergonomic-driven Geometric Exploration and Reshaping

279   0   0.0 ( 0 )
 نشر من قبل Youyi Zheng
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The paper addresses the following problem: given a set of man-made shapes, e.g., chairs, can we quickly rank and explore the set of shapes with respect to a given avatar pose? Answering this question requires identifying which shapes are more suitable for the defined avatar and pose; and moreover, to provide fast preview of how to alter the input geometry to better fit the deformed shapes to the given avatar pose? The problem naturally links physical proportions of human body and its interaction with object shapes in an attempt to connect ergonomics with shape geometry. We designed an interaction system that allows users to explore shape collections using the deformation of human characters while at the same time providing interactive previews of how to alter the shapes to better fit the user-specified character. We achieve this by first mapping ergonomics guidelines into a set of simultaneous multi-part constraints based on target contacts; and then, proposing a novel contact-based deformation model to realize multi-contact constraints. We evaluate our framework on various chair models and validate the results via a small user study.



قيم البحث

اقرأ أيضاً

In this paper, we are concerned with geometric constraint solvers, i.e., with programs that find one or more solutions of a geometric constraint problem. If no solution exists, the solver is expected to announce that no solution has been found. Owing to the complexity, type or difficulty of a constraint problem, it is possible that the solver does not find a solution even though one may exist. Thus, there may be false negatives, but there should never be false positives. Intuitively, the ability to find solutions can be considered a measure of solvers competence. We consider static constraint problems and their solvers. We do not consider dynamic constraint solvers, also known as dynamic geometry programs, in which specific geometric elements are moved, interactively or along prescribed trajectories, while continually maintaining all stipulated constraints. However, if we have a solver for static constraint problems that is sufficiently fast and competent, we can build a dynamic geometry program from it by solving the static problem for a sufficiently dense sampling of the trajectory of the moving element(s). The work we survey has its roots in applications, especially in mechanical computer-aided design (MCAD). The constraint solvers used in MCAD took a quantum leap in the 1990s. These approaches solve a geometric constraint problem by an initial, graph-based structural analysis that extracts generic subproblems and determines how they would combine to form a complete solution. These subproblems are then handed to an algebraic solver that solves the specific instances of the generic subproblems and combines them.
Recently, deep generative adversarial networks for image generation have advanced rapidly; yet, only a small amount of research has focused on generative models for irregular structures, particularly meshes. Nonetheless, mesh generation and synthesis remains a fundamental topic in computer graphics. In this work, we propose a novel framework for synthesizing geometric textures. It learns geometric texture statistics from local neighborhoods (i.e., local triangular patches) of a single reference 3D model. It learns deep features on the faces of the input triangulation, which is used to subdivide and generate offsets across multiple scales, without parameterization of the reference or target mesh. Our network displaces mesh vertices in any direction (i.e., in the normal and tangential direction), enabling synthesis of geometric textures, which cannot be expressed by a simple 2D displacement map. Learning and synthesizing on local geometric patches enables a genus-oblivious framework, facilitating texture transfer between shapes of different genus.
105 - Mingdong Zhang , Li Chen , Quan Li 2020
As an important method of handling potential uncertainties in numerical simulations, ensemble simulation has been widely applied in many disciplines. Visualization is a promising and powerful ensemble simulation analysis method. However, conventional visualization methods mainly aim at data simplification and highlighting important information based on domain expertise instead of providing a flexible data exploration and intervention mechanism. Trial-and-error procedures have to be repeatedly conducted by such approaches. To resolve this issue, we propose a new perspective of ensemble data analysis using the attribute variable dimension as the primary analysis dimension. Particularly, we propose a variable uncertainty calculation method based on variable spatial spreading. Based on this method, we design an interactive ensemble analysis framework that provides a flexible interactive exploration of the ensemble data. Particularly, the proposed spreading curve view, the region stability heat map view, and the temporal analysis view, together with the commonly used 2D map view, jointly support uncertainty distribution perception, region selection, and temporal analysis, as well as other analysis requirements. We verify our approach by analyzing a real-world ensemble simulation dataset. Feedback collected from domain experts confirms the efficacy of our framework.
We introduce a novel approach to measure the behavior of a geometric operator before and after coarsening. By comparing eigenvectors of the input operator and its coarsened counterpart, we can quantitatively and visually analyze how well the spectral properties of the operator are maintained. Using this measure, we show that standard mesh simplification and algebraic coarsening techniques fail to maintain spectral properties. In response, we introduce a novel approach for spectral coarsening. We show that it is possible to significantly reduce the sampling density of an operator derived from a 3D shape without affecting the low-frequency eigenvectors. By marrying techniques developed within the algebraic multigrid and the functional maps literatures, we successfully coarsen a variety of isotropic and anisotropic operators while maintaining sparsity and positive semi-definiteness. We demonstrate the utility of this approach for applications including operator-sensitive sampling, shape matching, and graph pooling for convolutional neural networks.
In exploratory tasks involving high-dimensional datasets, dimensionality reduction (DR) techniques help analysts to discover patterns and other useful information. Although scatter plot representations of DR results allow for cluster identification a nd similarity analysis, such a visual metaphor presents problems when the number of instances of the dataset increases, resulting in cluttered visualizations. In this work, we propose a scatter plot-based multilevel approach to display DR results and address clutter-related problems when visualizing large datasets, together with the definition of a methodology to use focus+context interaction on non-hierarchical embeddings. The proposed technique, called ExplorerTree, uses a sampling selection technique on scatter plots to reduce visual clutter and guide users through exploratory tasks. We demonstrate ExplorerTrees effectiveness through a use case, where we visually explore activation images of the convolutional layers of a neural network. Finally, we also conducted a user experiment to evaluate ExplorerTrees ability to convey embedding structures using different sampling strategies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا