ﻻ يوجد ملخص باللغة العربية
We present a spectral decomposition technique and its applications to a sample of galaxies hosting large-scale counter-rotating stellar disks. Our spectral decomposition technique allows to separate and measure the kinematics and the properties of the stellar populations of both the two counter-rotating disks in the observed galaxies at the same time. Our results provide new insights on the epoch and mechanism of formation of these galaxies.
We present a spectral decomposition technique that separates the contribution of different kinematic components in galaxies from the observed spectrum. This allows to study the kinematics and properties of the stellar populations of the individual co
The combination of strong gravitational lensing and stellar kinematics provides a powerful and robust method to investigate the mass and dynamical structure of early-type galaxies. We demonstrate this approach by analysing two massive ellipticals fro
In recent years integral-field spectroscopic surveys have revealed that the presence of kinematically decoupled stellar components is not a rare phenomenon in nearby galaxies. However, complete statistics are still lacking because they depend on the
We present the kinematics and stellar population properties of a sample of 53 galaxies (50 are Early-Type galaxies, ETGs) with Counter-Rotating Disks (CRD) extracted from a sample of about 4000 galaxies of all morphological types in the MaNGA survey
We present the results of the VLT/VIMOS integral-field spectroscopic observations of the inner 28x28 (3.1 kpc x 3.1 kpc) of the interacting spiral NGC 5719, which is known to host two co-spatial counter-rotating stellar discs. At each position in the