ﻻ يوجد ملخص باللغة العربية
We propose a parsimonious extension of the classical latent class model to cluster categorical data by relaxing the class conditional independence assumption. Under this new mixture model, named Conditional Modes Model, variables are grouped into conditionally independent blocks. The corresponding block distribution is a parsimonious multinomial distribution where the few free parameters correspond to the most likely modality crossings, while the remaining probability mass is uniformly spread over the other modality crossings. Thus, the proposed model allows to bring out the intra-class dependency between variables and to summarize each class by a few characteristic modality crossings. The model selection is performed via a Metropolis-within-Gibbs sampler to overcome the computational intractability of the block structure search. As this approach involves the computation of the integrated complete-data likelihood, we propose a new method (exact for the continuous parameters and approximated for the discrete ones) which avoids the biases of the textsc{bic} criterion pointed out by our experiments. Finally, the parameters are only estimated for the best model via an textsc{em} algorithm. The characteristics of the new model are illustrated on simulated data and on two biological data sets. These results strengthen the idea that this simple model allows to reduce biases involved by the conditional independence assumption and gives meaningful parameters. Both applications were performed with the R package texttt{CoModes}
In this paper, we present a Weibull link (skewed) model for categorical response data arising from binomial as well as multinomial model. We show that, for such types of categorical data, the most commonly used models (logit, probit and complementary
Determining the number G of components in a finite mixture distribution is an important and difficult inference issue. This is a most important question, because statistical inference about the resulting model is highly sensitive to the value of G. S
Beta regression has been extensively used by statisticians and practitioners to model bounded continuous data and there is no strong and similar competitor having its main features. A class of normalized inverse-Gaussian (N-IG) process was introduced
Diffusion tensor imaging (DTI) is a popular magnetic resonance imaging technique used to characterize microstructural changes in the brain. DTI studies quantify the diffusion of water molecules in a voxel using an estimated 3x3 symmetric positive def
An extension of the latent class model is presented for clustering categorical data by relaxing the classical class conditional independence assumption of variables. This model consists in grouping the variables into inter-independent and intra-depen