ترغب بنشر مسار تعليمي؟ اضغط هنا

Synchronization and phase ordering in globally coupled chaotic maps

242   0   0.0 ( 0 )
 نشر من قبل Orlando Alvarez-LLamoza
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the processes of synchronization and phase ordering in a system of globally coupled maps possessing bistable, chaotic local dynamics. The stability boundaries of the synchronized states are determined on the space of parameters of the system. The collective properties of the system are characterized by means of the persistence probability of equivalent spin variables that define two phases, and by a magnetization-like order parameter that measures the phase-ordering behavior. As a consequence of the global interaction, the persistence probability saturates for all values of the coupling parameter, in contrast to the transition observed in the temporal behavior of the persistence in coupled maps on regular lattices. A discontinuous transition from a non-ordered state to a collective phase-ordered state takes place at a critical value of the coupling. On an interval of the coupling parameter, we find three distinct realizations of the phase-ordered state, which can be discerned by the corresponding values of the saturation persistence. Thus, this statistical quantity can provide information about the transient behaviors that lead to the different phase configurations in the system. The appearance of disordered and phase-ordered states in the globally coupled system can be understood by calculating histograms and the time evolution of local map variables associated to the these collective states.



قيم البحث

اقرأ أيضاً

Coupled map lattices (CMLs) are prototypical dynamical systems on networks/graphs. They exhibit complex patterns generated via the interplay of diffusive/Laplacian coupling and nonlinear reactions modelled by a single iterated map at each node; the m aps are often taken as unimodal, e.g., logistic or tent maps. In this letter, we propose a class of higher-order coupled dynamical systems involving the hypergraph Laplacian, which we call coupled hypergraph maps (CHMs). By combining linearized (in-)stability analysis of synchronized states, hypergraph spectral theory, and numerical methods, we detect robust regions of chaotic cluster synchronization occurring in parameter space upon varying coupling strength and the main bifurcation parameter of the unimodal map. Furthermore, we find key differences between Laplacian and hypergraph Laplacian coupling and detect various other classes of periodic and quasi-periodic patterns. The results show the high complexity of coupled graph maps and indicate that they might be an excellent universal model class to understand the similarities and differences between dynamics on classical graphs and dynamics on hypergraphs.
We investigate the parametric evolution of riddled basins related to synchronization of chaos in two coupled piecewise-linear Lorenz maps. Riddling means that the basin of the synchronized attractor is shown to be riddled with holes belonging to anot her basin in an arbitrarily fine scale, which has serious consequences on the predictability of the final state for such a coupled system. We found that there are wide parameter intervals for which two piecewise-linear Lorenz maps exhibit riddled basins (globally or locally), which indicates that there are riddled basins in coupled Lorenz equations, as previously suggested by numerical experiments. The use of piecewise-linear maps makes it possible to prove rigorously the mathematical requirements for the existence of riddled basins.
We study the synchronization of chaotic units connected through time-delayed fluctuating interactions. We focus on small-world networks of Bernoulli and Logistic units with a fixed chiral backbone. Comparing the synchronization properties of static a nd fluctuating networks, we find that random network alternations can enhance the synchronizability. Synchronized states appear to be maximally stable when fluctuations are much faster than the time-delay, even when the instantaneous state of the network does not allow synchronization. This enhancing effect disappears for very slow fluctuations. For fluctuation time scales of the order of the time-delay, a desynchronizing resonance is reported. Moreover, we observe characteristic oscillations, with a periodicity related to the coupling delay, as the system approaches or drifts away from the synchronized state.
Two types of phase synchronization (accordingly, two scenarios of breaking phase synchronization) between coupled stochastic oscillators are shown to exist depending on the discrepancy between the control parameters of interacting oscillators, as in the case of classical synchronization of periodic oscillators. If interacting stochastic oscillators are weakly detuned, the phase coherency of the attractors persists when phase synchronization breaks. Conversely, if the control parameters differ considerably, the chaotic attractor becomes phase-incoherent under the conditions of phase synchronization break.
Synchronization dynamics of mutually coupled chaotic semiconductor lasers are investigated experimentally and compared to identical synchronization of unidirectionally coupled lasers. Mutual coupling shows high quality synchronization in a broad rang e of self-feedback and coupling strengths. It is found to be tolerant to significant parameter mismatch which for unidirectional coupling would result in loss of synchronization. The advantages of mutual coupling are emphasized in light of its potential use in chaos communications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا