We present magnetization, specific heat, and 27Al NMR investigations on YbFe2Al10 over a wide range in temperature and magnetic field. The magnetic susceptibility at low temperatures is strongly enhanced at weak magnetic fields, accompanied by a ln(T0/T) divergence of the low-T specific heat coefficient in zero field, which indicates a ground state of correlated electrons. From our hard X-ray photo emission spectroscopy (HAXPES) study, the Yb valence at 50 K is evaluated to be 2.38. The system displays valence fluctuating behavior in the low to intermediate temperature range, whereas above 400 K, Yb3+ carries a full and stable moment, and Fe carries a moment of about 3.1 mB. The enhanced value of the Sommerfeld Wilson ratio and the dynamic scaling of spin-lattice relaxation rate divided by T [27(1/T1T)] with static susceptibility suggests admixed ferromagnetic correlations. 27(1/T1T) simultaneously tracks the valence fluctuations from the 4f -Yb ions in the high temperature range and field dependent antiferromagnetic correlations among partially Kondo screened Fe 3d moments at low temperature, the latter evolve out of an Yb 4f admixed conduction band.