ترغب بنشر مسار تعليمي؟ اضغط هنا

The Heating of Mid-Infrared Dust in the Nearby Galaxy M33: A Testbed for Tracing Galaxy Evolution

139   0   0.0 ( 0 )
 نشر من قبل Marie Calapa
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Because the 8 {mu}m polycyclic aromatic hydrocarbon (PAH) emission has been found to correlate with other well-known star formation tracers, it has widely been used as a star formation rate (SFR) tracer. There are, however, studies that challenge the accuracy and reliability of the 8 {mu}m emission as a SFR tracer. Our study, part of the Herschel M33 Extended Survey (HERM33ES) open time key program, aims at addressing this issue by analyzing the infrared emission from the nearby spiral galaxy M33 at the high spatial scale of 75 pc. Combining data from the Herschel Space Observatory and the Spitzer Space Telescope we find that the 8 {mu}m emission is better correlated with the 250 {mu}m emission, which traces cold interstellar gas, than with the 24 {mu}m emission. The L(8)/L(24) ratio is highly depressed in 24 {mu}m luminous regions, which correlate with known HII regions. We also compare our results with the dust emission models by Draine & Li (2007). We confirm that the depression of 8 {mu}m PAH emission near star-forming regions is higher than what is predicted by models; this is possibly an effect of increased stellar radiation from young stars destroying the dust grains responsible for the 8 {mu}m emission as already suggested by other authors. We find that the majority of the 8 {mu}m emission is fully consistent with heating by the diffuse interstellar medium, similar to what recently determined for the dust emission in M31 by Draine at al. (2013). We also find that the fraction of 8 {mu}m emission associated with the diffuse interstellar radiation field ranges between 60% and 80% and is 40% larger than the diffuse fraction at 24 {mu}m.



قيم البحث

اقرأ أيضاً

508 - X. Dai 2009
We present galaxy luminosity functions at 3.6, 4.5, 5.8, and 8.0 micron measured by combining photometry from the IRAC Shallow Survey with redshifts from the AGN and Galaxy Evolution Survey of the NOAO Deep Wide-Field Survey Bootes field. The well-de fined IRAC samples contain 3800-5800 galaxies for the 3.6-8.0 micron bands with spectroscopic redshifts and z < 0.6. We obtained relatively complete luminosity functions in the local redshift bin of z < 0.2 for all four IRAC channels that are well fit by Schechter functions. We found significant evolution in the luminosity functions for all four IRAC channels that can be fit as an evolution in M* with redshift, Delta M* = Qz. While we measured Q=1.2pm0.4 and 1.1pm0.4 in the 3.6 and 4.5 micron bands consistent with the predictions from a passively evolving population, we obtained Q=1.8pm1.1 in the 8.0 micron band consistent with other evolving star formation rate estimates. We compared our LFs with the predictions of semi-analytical galaxy formation and found the best agreement at 3.6 and 4.5 micron, rough agreement at 8.0 micron, and a large mismatch at 5.8 micron. These models also predicted a comparable Q value to our luminosity functions at 8.0 micron, but predicted smaller values at 3.6 and 4.5 micron. We also measured the luminosity functions separately for early and late-type galaxies. While the luminosity functions of late-type galaxies resemble those for the total population, the luminosity functions of early-type galaxies in the 3.6 and 4.5 micron bands indicate deviations from the passive evolution model, especially from the measured flat luminosity density evolution. Combining our estimates with other measurements in the literature, we found (53pm18)% of the present stellar mass of early-type galaxies has been assembled at z=0.7.
We explore the co-evolution of galaxies in nearby groups (V < 3000 km/s) with a multi-wavelength approach. We analyze GALEX far-UV (FUV) and near-UV (NUV) imaging and SDSS u,g,r,i,z data of groups spanning a large range of dynamical phases. We charac terize the photometric properties of spectroscopically-confirmed galaxy members and investigate the global properties of the groups through a dynamical analysis. Here we focus on NGC 5846, the third most massive association of Early-Type Galaxies (ETG) after the Virgo and Fornax clusters. The group, composed of 90 members, is dominated by ETGs (about 80 per cent), and among ETGs about 40% are dwarfs. Results are compared with those obtained for three groups in the LeoII cloud, which are radically different both in member-galaxy population and dynamical properties. The FUV-NUV cumulative colour distribution and the normalized UV luminosity function (LF) significantly differ due to the different fraction of late-type galaxy population. The UV LF of NGC 5846 resembles that of the Virgo cluster, however our analysis suggests that star-formation episodes are still occurring in most of the group galaxies, including ETGs. The NUV-i colour distribution, the optical-UV colour-colour diagram, and NUV-r vs. Mr colour-magnitude relation suggest that the gas contribution cannot be neglected in the evolution of ETG-type group members. Our analysis highlights that NGC~5846 is still in an active phase of its evolution, notwithstanding the dominance of dwarf and bright ETGs and its virialized configuration.
We present a Giant Molecular Cloud (GMC) catalog toward M33, containing 71 GMCs in total, based on wide field and high sensitivity CO(J=3-2) observations with a spatial resolution of 100 pc using the ASTE 10 m telescope. Employing archival optical da ta, we identify 75 young stellar groups (YSGs) from the excess of the surface stellar density, and estimate their ages by comparing with stellar evolution models. A spatial comparison among the GMCs, YSGs, and HII regions enable us to classify GMCs into four categories: Type A showing no sign of massive star formation (SF), Type B being associated only with HII regions, Type C with both HII regions and <10 Myr-old YSGs and Type-D with both HII regions and 10--30 Myr YSGs. Out of 65 GMCs (discarding those at the edges of the observed fields), 1 (1%), 13 (20%), 29 (45%), and 22 (34%) are Types A, B, C, and D, respectively. We interpret these categories as stages in a GMC evolutionary sequence. Assuming that the timescale for each evolutionary stage is proportional to the number of GMCs, the lifetime of a GMC with a mass >10^5 Mo is estimated to be 20--40 Myr. In addition, we find that the dense gas fraction as traced by the CO(J=3-2)/CO(J=1-0) ratio is enhanced around SF regions. This confirms a scenario where dense gas is preferentially formed around previously generated stars, and will be the fuel for the next stellar generation. In this way, massive SF gradually propagates in a GMC until gas is exhausted.
We present observations from the First Light Infrared TEst CAMera (FLITECAM) on board the Stratospheric Observatory for Infrared Astronomy (SOFIA), the Spitzer Infrared Array Camera (IRAC) and the Spitzer Infrared Spectrograph (IRS) SH mode in three well-known Photodissocation Regions (PDRs), the reflection nebulae (RNe) NGC 7023 and NGC 2023 and to the southeast of the Orion Bar, which are well suited to probe emission from Polycyclic Aromatic Hydrocarbon molecules (PAHs). We investigate the spatial behaviour of the FLITECAM 3.3 um filter as a proxy for the 3.3 um PAH band, the integrated 11.2 um PAH band, and the IRAC 8.0 um filter as a proxy for the sum of the 7.7 and 8.6 um PAH bands. The resulting ratios of 11.2/3.3 and IRAC 8.0/11.2 provide an approximate measure of the average PAH size and PAH ionization respectively. In both RNe, we find that the relative PAH ionization and the average PAH size increases with decreasing distance to the illuminating source. The average PAH sizes derived for NGC 2023 are greater than those found for NGC 7023 at all points. Both results indicate that PAH size is dependent on the radiation field intensity. These results provide additional evidence of a rich carbon-based chemistry driven by the photo-chemical evolution of the omnipresent PAH molecules within the interstellar medium. In contrast, we did not detect a significant variation in the average PAH size found in the region southeast of the Orion Bar and report a peculiar PAH ionization radial profile.
260 - D. Lutz 2014
Roughly half of the radiation from evolving galaxies in the early universe reaches us in the far-infrared and submillimeter wavelength range. Recent major advances in observing capabilities, in particular the launch of the Herschel Space Observatory in 2009, have dramatically enhanced our ability to use this information in the context of multiwavelength studies of galaxy evolution. Near its peak, three quarters of the cosmic infrared background is now resolved into individually detected sources. The use of far-infrared diagnostics of dust-obscured star formation and of interstellar medium conditions has expanded from rare extreme high-redshift galaxies to more typical main sequence galaxies and hosts of active galactic nuclei, out to z>~2. These studies shed light on the evolving role of steady equilibrium processes and of brief starbursts, at and since the peak of cosmic star formation and black hole accretion. This review presents a selection of recent far-infrared studies of galaxy evolution, with an emphasis on Herschel results
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا