ترغب بنشر مسار تعليمي؟ اضغط هنا

High-energy QCD evolution from Slavnov-Taylor identity

363   0   0.0 ( 0 )
 نشر من قبل Andrea Quadri
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف A. Quadri




اسأل ChatGPT حول البحث

We clarify the derivation of high-energy QCD evolution equations from the fundamental gauge symmetry of QCD. The gauge-fixed classical action of the Color Glass Condensate (CGC) is shown to be invariant under a suitable BRST symmetry, that holds after the separation of the gluon modes into their fast classical (background) part, the soft component and the semifast one, over which the one-step quantum evolution is carried out. The resulting Slavnov-Taylor (ST) identity holds to all orders in perturbation theory and strongly constrains the CGC effective field theory (EFT) arising from the integration of the soft modes. We show that the ST identity guarantees gauge-invariance of the EFT. It also allows to control the dependence on the gauge-fixing choice for the semifast modes (usually the lightcone gauge in explicit computations). The formal properties of the evolution equations valid in different regimes (BKFL, JIMWLK, ...) can be all derived in a unified setting within this algebraic approach.



قيم البحث

اقرأ أيضاً

259 - Hael Collins , R. Holman , 2014
We develop a method for treating the consistency relations of inflation that includes the full time-evolution of the state. This approach relies only on the symmetries of the inflationary setting, in particular a residual conformal symmetry in the sp atial part of the metric, along with general properties which hold for any quantum field theory. As a result, the consistency relations that emerge, which are essentially the Slavnov-Taylor identities associated with this residual conformal symmetry, apply very generally: they are true of the full Greens functions, hold largely independently of the particular inflationary model, and can be used for arbitrary states. We illustrate these techniques by showing the form assumed by the standard consistency relation between the two and three-point functions for the primordial scalar fluctuations when they are in a Bunch-Davies state. But because we have included the full evolution of the state, this approach works for a general initial state as well and does not need to have assumed that inflation began in the Bunch-Davies state.
We show that a powerful Slavnov-Taylor (ST) identity exists for the Effective Field Theory (EFT) of the Color Glass Condensate (CGC), allowing to control by purely algebraic means the full dependence on the background fields of the fast gluon modes, as well as the correlators of the quantum fluctuations of the classical gluon source. We use this formalism to study the change of the background fast modes (in the Coulomb gauge), induced by the quantum corrections of the semi-fast gluons. We establish the evolution equation for the EFT of the CGC, which points towards an algebraic derivation of the JIMWLK equation. Being based on symmetry-arguments only, the approach can be used to extend the analysis to arbitrary gauges and to higher orders in the perturbation expansion of the EFT.
111 - D. Binosi , A. Quadri 2015
The cosmological Slavnov-Taylor (ST) identity of the Einstein-Hilbert action coupled to a single inflaton field is obtained from the Becchi-Rouet-Stora-Tyutin (BRST) symmetry associated with diffeomorphism invariance in the Arnowitt-Deser-Misner (ADM ) formalism. The consistency conditions between the correlators of the scalar and tensor modes in the squeezed limit are then derived from the ST identity, together with the softly broken conformal symmetry. Maldacenas original relations connecting the 2- and 3-point correlators at horizon crossing are recovered, as well as the next-to-leading corrections, controlled by the special conformal transformations.
Using Hopf-algebraic structures as well as diagrammatic techniques for determining the Slavnov-Taylor identities for QCD we construct the relations for the triple and quartic gluon vertices at one loop. By making the longitudinal projection on an ext ernal gluon of a Greens function we show that the gluon self-energy of that leg is consistently replaced by a ghost self-energy. The resulting identities are then studied by evaluating all the graphs for an off-shell non-exceptional momentum configuration. In the case of the 3-point function this is for the most general momentum case and for the 4-point function we consider the fully symmetric point.
We exploit the Ward-Slavnov-Taylor identity relating the 3-gluons to the ghost-gluon vertices to conclude either that the ghost dressing function is finite and non vanishing at zero momentum while the gluon propagator diverges (although it may do so weakly enough not to be in contradiction with current lattice data) or that the 3-gluons vertex is non-regular when one momentum goes to zero. We stress that those results should be kept in mind when one studies the Infrared properties of the ghost and gluon propagators, for example by means of Dyson-Schwinger equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا