ﻻ يوجد ملخص باللغة العربية
We present a study of age-related spectral signatures observed in 25 young low-mass objects that we have previously determined as possible kinematic members of five young moving groups: the Local Association (Pleiades moving group, age=20 - 150 Myr), the Ursa Major group (Sirius supercluster, age=300 Myr), the Hyades supercluster (age=600 Myr), IC 2391 supercluster (age=35--55 Myr) and the Castor moving group (age=200 Myr). In this paper we characterize the spectral properties of observed high or low resolution spectra of our kinematic members by fitting theoretical spectral distributions. We study signatures of youth, such as lithium {sc i} 6708 AA, H$alpha$ emission and other age-sensitive spectroscopic signatures in order to confirm the kinematic memberships through age constraints. We find that 21 ($84%$) targets show spectroscopic signatures of youth in agreement with the age ranges of the moving group to which membership is implied. For two further objects, age-related constraints remain difficult to determine from our analysis. In addition, we confirm two moving group kinematic candidates as brown dwarfs.
We study a target sample of 68 low-mass objects (with spectral types in the range M4.5-L1) previously selected via photometric and astrometric criteria, as possible members of five young moving groups: the Local Association (Pleiades moving group, ag
In an effort to better understand the formation of galaxy groups, we examine the kinematics of a large sample of spectroscopically confirmed X-ray galaxy groups in the Cosmic Evolution Survey (COSMOS) with a high sampling of galaxy group members up t
We image 104 newly identified low-mass (mostly M-dwarf) pre-main sequence members of nearby young moving groups with Magellan Adaptive Optics (MagAO) and identify 27 binaries with instantaneous projected separation as small as 40 mas. 15 were previou
A significant fraction of nearby young moving group members harbor circumstellar debris dust disks. Due to their proximity and youth, these disks are attractive targets for studying the early evolution of debris dust and planetesimal belts. Here we p
As part of our search for new low-mass members of nearby young moving groups (YMG), we discovered three low-mass, spectroscopic binaries, two of which are not kinematically associated with any known YMG. Using high-resolution optical spectroscopy, we