ﻻ يوجد ملخص باللغة العربية
With continued feature size scaling, even state of the art semiconductor manufacturing processes will often run into layouts with poor printability and yield. Identifying lithography hotspots is important at both physical verification and early physical design stages. While detailed lithography simulations can be very accurate, they may be too computationally expensive for full-chip scale and physical design inner loops. Meanwhile, pattern matching and machine learning based hotspot detection methods can provide acceptable quality and yet fast turn-around-time for full-chip scale physical verification and design. In this paper, we discuss some key issues and recent results on lithography hotspot detection and mitigation in nanometer VLSI.
As technology scaling is approaching the physical limit, lithography hotspot detection has become an essential task in design for manufacturability. While the deployment of pattern matching or machine learning in hotspot detection can help save signi
We propose an approach for super-resolution optical lithography which is based on the inverse of magnetic resonance imaging (MRI). The technique uses atomic coherence in an ensemble of spin systems whose final state population can be optically detect
Synchoros VLSI design style has been proposed as an alternative to standard cell-based design. Standard cells are replaced by synchoros large grain VLSI design objects called SiLago blocks. This new design style enables end-to-end automation of large
As the feature size of semiconductor process further scales to sub-16nm technology node, triple patterning lithography (TPL) has been regarded one of the most promising lithography candidates. M1 and contact layers, which are usually deployed within
Layout fracturing is a fundamental step in mask data preparation and e-beam lithography (EBL) writing. To increase EBL throughput, recently a new L-shape writing strategy is proposed, which calls for new L-shape fracturing, versus the conventional re