ﻻ يوجد ملخص باللغة العربية
The effective dimension-5 operators can be induced by quantum gravity or inspired by string and M theories. They have important impacts on grand unified theories. We investigate the group theoretic nature of them for the well known E(6) model. Considering the breaking chains $E_{6}mapsto H=SO(10)times U_{V}(1)mapsto SU(5)times U_{V}(1)times U_{V}(1)mapsto SU(3)times SU(2)times U_{Z}(1)times U_{V}(1)times U_{V}(1)$ and $E_{6}mapsto H=SO(10)times U_{V}(1)mapsto SU(4)times SU_{L}(2)times SU_{R}(2)times U_{V}(1)mapsto SU(3)times SU_{L}(2)times SU_{R}(2)times U_{S}(1)times U_{V}(1)$, we derive and give all of the Clebsch-Gordan coefficients $Phi^{(r)}_{s,z}$ associated with $E_6$ breaking to the standard model. Some applications of the results are discussed shortly.
Extensions of the standard model with low-energy supersymmetry generically allow baryon- and lepton-number violating operators of dimension four and five, yielding rapid proton decay. The dimension-four operators are usually forbidden by matter parit
Grand unified theories may display multiply interacting fields with strong coupling dynamics. This poses two new problems: (1) What is the nature of chaotic reheating after inflation, and (2) How is reheating sensitive to the mass spectrum of these t
In the effective field theory framework, quantum gravity can induce effective dimension-5 operators, which have important impacts on grand unified theories. Interestingly, one of main effects is the modification of the usual gauge coupling unificatio
We propose a top quark condensate scenario embedded in grand unified theories (GUTs), stressing that the gauged Nambu-Jona-Lasinio model has a nontrivial continuum limit (``renormalizability) under certain condition which is actually satisfied in all
Renormalizable SO(10) grand unified theories (GUTs), extended by $O(N_g)_F$ family gauge symmetry, generate minimal supersymmetric Standard Model flavour structure dynamically via vacuum expectation values of Yukawon Higgs multiplets. For concrete il