ﻻ يوجد ملخص باللغة العربية
Electron beam lithography (EBL) is a promising maskless solution for the technology beyond 14nm logic node. To overcome its throughput limitation, recently the traditional EBL system is extended into MCC system. %to further improve the throughput. In this paper, we present E-BLOW, a tool to solve the overlapping aware stencil planning (OSP) problems in MCC system. E-BLOW is integrated with several novel speedup techniques, i.e., successive relaxation, dynamic programming and KD-Tree based clustering, to achieve a good performance in terms of runtime and solution quality. Experimental results show that, compared with previous works, E-BLOW demonstrates better performance for both conventional EBL system and MCC system.
Layout fracturing is a fundamental step in mask data preparation and e-beam lithography (EBL) writing. To increase EBL throughput, recently a new L-shape writing strategy is proposed, which calls for new L-shape fracturing, versus the conventional re
We present a novel shadow evaporation technique for the realization of junctions and capacitors. The design by E-beam lithography of strongly asymmetric undercuts on a bilayer resist enables in-situ fabrication of junctions and capacitors without the
A combined bottom-up assembly of electrodeposited nanowires and electron beam lithography technique has been developed to investigate the spin transfer torque and microwave emission on specially designed nanowires containing a single Co/Cu/Co pseudo
We perform a beam-beam parameter study for a TeV-scale PWFA (particle-driven plasma wakefield acceleration) $mathrm{e}^+$$mathrm{e}^-$ linear collider using GUINEA-PIG simulations. The study shows that the total luminosity follows the $1/sqrt{sigma_z
We calculate the single spin asymmetry for the $e p to e Delta(1232)$ process, for an electron beam polarized normal to the scattering plane. Such single spin asymmetries vanish in the one-photon exchange approximation, and are directly proportional