ﻻ يوجد ملخص باللغة العربية
We consider a class of generalized Kuznetsov--Zabolotskaya--Khokhlov (gKZK) equations and determine its equivalence group, which is then used to give a complete symmetry classification of this class. The infinite-dimensional symmetry is used to reduce such equations to (1+1)-dimensional PDEs. Special attention is paid to group-theoretical properties of a class of generalized dispersionless KP (gdKP) or Zabolotskaya--Khokhlov equations as a subclass of gKZK equations. The conditions are determined under which a gdKP equation is invariant under a Lie algebra containing the Virasoro algebra as a subalgebra. This occurs if and only if this equation is completely integrable. A similar connection is shown to hold for generalized KP equations.
The conditions for a generalized Burgers equation which a priori involves nine arbitrary functions of one, or two variables to allow an infinite dimensional symmetry algebra are determined. Though this algebra can involve up to two arbitrary function
We study nonlocal reductions of coupled equations in $1+1$ dimensions of the Heisenberg ferromagnet type. The equations under consideration are completely integrable and have a Lax pair related to a linear bundle in pole gauge. We describe the integr
The Lie point symmetries of ordinary differential equations (ODEs) that are candidates for having the Painleve property are explored for ODEs of order $n =2, dots ,5$. Among the 6 ODEs identifying the Painleve transcendents only $P_{III}$, $P_V$ and
Symmetries of a differential equations is one of the most important concepts in theory of differential equations and physics. One of the most prominent equations is KdV (Kortwege-de Vries) equation with application in shallow water theory. In this pa
We present in this report 1+1 dimensional nonlinear partial differential equation integrable through inverse scattering transform. The integrable system under consideration is a pseudo-Hermitian reduction of a matrix generalization of classical 1+1 d