ترغب بنشر مسار تعليمي؟ اضغط هنا

Elastic trapping of dislocation loops in cascades in ion-irradiated tungsten foils

239   0   0.0 ( 0 )
 نشر من قبل Daniel Mason
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using _in situ_ transmission electron microscopy (TEM), we have observed nanometre scale dislocation loops formed when an ultra-high-purity tungsten foil is irradiated with a very low fluence of self-ions. Analysis of the TEM images has revealed the largest loops to be predominantly of prismatic 1/2<111> type and of vacancy character. The formation of such dislocation loops is surprising since isolated loops are expected to be highly mobile, and should escape from the foil. In this work we show that the observed size and number density of loops can be explained by the fact that the loops are _not_ isolated - the loops formed in close proximity in the cascades interact with each other and with vacancy clusters, also formed in cascades, through long-range elastic fields, which prevent the escape of loops from the foil. We find that experimental observations are well reproduced by object Kinetic Monte Carlo simulations of evolution of cascades _only_ if elastic interaction between the loops is taken into account. Our analysis highlights the profound effect of elastic interaction between defects on the microstructural evolution of irradiated materials.



قيم البحث

اقرأ أيضاً

141 - S.L. Dudarev , K. Arakawa , X. Yi 2014
Defect microstructures formed in ion-irradiated metals, for example iron or tungsten, often exhibit patterns of spatially ordered nano-scale dislocation loops. We show that such ordered dislocation loop structures may form spontaneously as a result o f Brownian motion of loops, biased by the angular-dependent elastic interaction between the loops. Patterns of spatially ordered loops form once the local density of loops produced by ion irradiation exceeds a critical threshold value.
Hydrogen isotopes are retained in materials for fusion power applications, changing both hydrogen embrittlement and tritium inventory as the microstructure undergoes irradiation damage. But modelling of highly damaged materials - exposed to over 0.1 displacements per atom (dpa) - where asymptotic saturation is observed, for example tungsten facing the plasma in a fusion tokamak reactor, is difficult because a highly damaged microstructure cannot be treated as weakly interacting isolated defect traps. In this paper we develop computational techniques to find the defect content in highly irradiated materials without adjustable parameters. First we show how to generate converged high dose (>1 dpa) microstructures using a combination of the creation-relaxation algorithm and molecular dynamics simulations of collision cascades. Then we make robust estimates of point defects and void regions with simple developments of the Wigner-Seitz decomposition of lattice sites. We use our estimates of the void surface area to predict the deuterium retention capacity of tungsten as a function of dose. This is then compared to 3He nuclear reaction analysis (NRA) measurements of tungsten samples self-irradiated at 290 K to different damage doses and exposed to deuterium plasma at low energy at 370 K. We show that our simulated microstructures give an excellent match to the experimental data, with both model and experiment showing 1.5-2.0 at.% deuterium retained in tungsten in the limit of high dose.
Understanding defect production and evolution under irradiation is a long-standing multi-scale problem. Conventionally, experimental examination of irradiation-induced defects (IIDs) has mainly relied on transmission electron microscopy (TEM), which offers high spatial resolution but requires destructive sample preparation. Furthermore, limited field of view and low strain sensitivity make multi-scale characterisation and quantitative strain measurements difficult. Here we explore the potential of using advanced techniques in the scanning electron microscope (SEM) to non-destructively probe irradiation damage at the surface of bulk materials. Electron channelling contrast imaging (ECCI) is used to image nano-scale irradiation-induced defects in 20 MeV self-ion irradiated tungsten, the main candidate material for fusion reactor armour. The results show an evolution of the damage microstructure from uniformly and randomly distributed nano-scale defects at 0.01 dpa (displacement per atom) to string structures extending over hundreds of nanometres at 1 dpa. Cross-correlation based high-resolution EBSD (HR-EBSD) is used to probe the lattice strain fields associated with IIDs. While there is little strain fluctuation at 0.01 dpa, significant heterogeneity in the lattice strains is observed at 0.1 dpa, increasing with dose until saturation at 0.32 dpa. The characteristic length scale of strain fluctuations is ~500 nm. Together, ECCI and HR-EBSD reveal a transition from a structure where defects are disordered to a structure with long-range order driven by elastic interactions between pre-existing defects and new cascade damage. This study demonstrates that SEM provides an attractive tool for rapid throughput, non-destructive, multi-scale and multi-aspect characterisation of irradiation damage.
Dipolar dislocation loops, prevalent in fcc metals, are widely recognized as controlling many physical aspects of plastic deformation. We present results of 3D dislocation dynamics simulations that shed light on the mechanisms of their formation, mot ion, interactions, and large-scale patterning. We identify two main formation mechanisms, enabled by cross-slip, and show that arrays of dipoles can be easily formed as a result of the interaction between glide screw dislocations. We present a systematic analysis of the spectrum of possible junctions that can form as a result of mutual interaction between dipoles, and between dipoles and glide dislocations. We show that fully immobile dislocation segments arise in particular cases of these interactions, leading to hardening and Frank-Read type sources. We reveal that the collective motion of dipolar loop arrays can be induced by glide dislocations in the channels of Persistent Slip Bands (PSB), and result in their clustering within PSB channel walls. An efficient tripolar drag mechanism is found to contribute to the clustering of dipolar loops near channel walls.
Plastic deformation of crystals is a physical phenomenon, which has immensely driven the development of human civilisation since the onset of the Chalcolithic period. This process is primarily governed by the motion of line defects, called dislocatio ns. Each dislocation traps a quantum of plastic deformation expressible in terms of its Burgers vector[1,2]. Theorising the mechanisms of dislocation motion at the atomistic scales of length and time remains a challenging task on account of the extreme complexities associated with the dynamics. We present a new concept of modelling a moving dislocation as the dynamic distribution of the elastic field singularity within the span of the Burgers vector. Surprisingly, numerical implementation of this model for the periodic expansion-shrinkage cycle of the singularity is found to exhibit an energetics, which resembles that of a dislocation moving in the presence of the Peierls barrier[1-4]. The singularity distribution is shown to be the natural consequence under the external shear stress. Moreover, in contrast to the conventional assumption, here the calculations reveal a significant contribution of the linear elastic region surrounding the core towards the potential barrier.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا