ﻻ يوجد ملخص باللغة العربية
We study analytically and numerically Minsky instability as a combination of top-down, bottom-up and peer-to-peer positive feedback loops. The peer-to-peer interactions are represented by the links of a network formed by the connections between firms, contagion leading to avalanches and percolation phase transitions propagating across these links. The global parameter in the top-bottom, bottom-up feedback loop is the interest rate. Before the Minsky moment, in the Minsky Loans Accelerator stage, the relevant bottom parameter representing the individual firms micro-states is the quantity of loans. After the Minsky moment, in the Minsky Crisis Accelerator stage, the relevant bottom parameters are the number of ponzi units / quantity of failures, defaults. We represent the top-bottom, bottom-up interactions on a plot similar to the Marshal-Walras diagram for quantity-price market equilibrium (where the interest rate is the analog of the price). The Minsky instability is then simply emerging as a consequence of the fixed point (the intersection of the supply and demand curves) being unstable (repulsive). In the presence of network effects, one obtains more than one fixed point and a few dynamic regimes (phases). We describe them and their implications for understanding, predicting and steering economic instability.
The use of equilibrium models in economics springs from the desire for parsimonious models of economic phenomena that take human reasoning into account. This approach has been the cornerstone of modern economic theory. We explain why this is so, exto
This short review presents a selected history of the mutual fertilization between physics and economics, from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics c
Following the financial crisis of 2007-2008, a deep analogy between the origins of instability in financial systems and complex ecosystems has been pointed out: in both cases, topological features of network structures influence how easily distress c
The role of Network Theory in the study of the financial crisis has been widely spotted in the latest years. It has been shown how the network topology and the dynamics running on top of it can trigger the outbreak of large systemic crisis. Following
Solomon and Golo [1] have recently proposed an autocatalytic (self-reinforcing) feedback model which couples a macroscopic system parameter (the interest rate), a microscopic parameter that measures the distribution of the states of the individual ag