Radio astronomical imaging arrays comprising large numbers of antennas, O(10^2-10^3) have posed a signal processing challenge because of the required O(N^2) cross correlation of signals from each antenna and requisite signal routing. This motivated the implementation of a Packetized Correlator architecture that applies Field Programmable Gate Arrays (FPGAs) to the O(N) F-stage transforming time domain to frequency domain data, and Graphics Processing Units (GPUs) to the O(N^2) X-stage performing an outer product among spectra for each antenna. The design is readily scalable to at least O(10^3) antennas. Fringes, visibility amplitudes and sky image results obtained during field testing are presented.