ترغب بنشر مسار تعليمي؟ اضغط هنا

Relative Thermalization

119   0   0.0 ( 0 )
 نشر من قبل Lidia del Rio
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

When studying thermalization of quantum systems, it is typical to ask whether a system interacting with an environment will evolve towards a local thermal state. Here, we show that a more general and relevant question is when does a system thermalize relative to a particular reference? By relative thermalization we mean that, as well as being in a local thermal state, the system is uncorrelated with the reference. We argue that this is necessary in order to apply standard statistical mechanics to the study of the interaction between a thermalized system and a reference. We then derive a condition for relative thermalization of quantum systems interacting with an arbitrary environment. This condition has two components: the first is state-independent, reflecting the structure of invariant subspaces, like energy shells, and the relative sizes of system and environment; the second depends on the initial correlations between reference, system and environment, measured in terms of conditional entropies. Intuitively, a small system interacting with a large environment is likely to thermalize relative to a reference, but only if, initially, the reference was not highly correlated with the system and environment. Our statement makes this intuition precise, and we show that in many natural settings this thermalization condition is approximately tight. Established results on thermalization, which usually ignore the reference, follow as special cases of our statements.



قيم البحث

اقرأ أيضاً

A system in thermal equilibrium with a bath will generally be in an athermal state, if the system-bath coupling is strong. In some cases, it will be possible to extract work from that athermal state, after disconnecting the system from the bath. We u se this observation to devise a battery charging and storing unit, simply consisting of a system, acting as the battery, and a bath. The charging cycle---connect, let thermalize, disconnect, extract work---requires very little external control and the charged state of the battery, being a part of global thermal equilibrium, can be maintained indefinitely and for free. The efficiency, defined as the ratio of the extractable work stored in the battery and the total work spent on connecting and disconnecting, is always $leq 1$, which is a manifestation of the second law of thermodynamics. Moreover, coupling, being a resource for the device, is also a source of dissipation: the entropy production per charging cycle is always significant, strongly limiting the efficiency in all coupling strength regimes. We show that our general results also hold for generic microcanonical baths. We illustrate our theory on the Caldeira-Leggett model with a harmonic oscillator (the battery) coupled to a harmonic bath, for which we derive general asymptotic formulas in both weak and ultrastrong coupling regimes, for arbitrary Ohmic spectral densities. We show that the efficiency can be increased by connecting several copies of the battery to the bath. Finally, as a side result, we derive a general formula for Gaussian ergotropy, that is, the maximal work extractable by Gaussian unitary operations from Gaussian states of multipartite continuous-variable systems.
67 - H. Dong , S. Yang , X.F. Liu 2007
We study the role of the system-bath coupling for the generalized canonical thermalization [S. Popescu, et al., Nature Physics 2,754(2006) and S. Goldstein et al., Phys. Rev. Lett. 96, 050403(2006)] that reduces almost all the pure states of the univ erse [formed by a system S plus its surrounding heat bath $B$] to a canonical equilibrium state of S. We present an exactly solvable, but universal model for this kinematic thermalization with an explicit consideration about the energy shell deformation due to the interaction between S and B. By calculating the state numbers of the universe and its subsystems S and B in various deformed energy shells, it is found that, for the overwhelming majority of the universe states (they are entangled at least), the diagonal canonical typicality remains robust with respect to finite interactions between S and B. Particularly, the kinematic decoherence is utilized here to account for the vanishing of the off-diagonal elements of the reduced density matrix of S. It is pointed out that the non-vanishing off-diagonal elements due to the finiteness of bath and the stronger system-bath interaction might offer more novelties of the quantum thermalization.
In this work, we show how Gibbs or thermal states appear dynamically in closed quantum many-body systems, building on the program of dynamical typicality. We introduce a novel perturbation theorem for physically relevant weak system-bath couplings th at is applicable even in the thermodynamic limit. We identify conditions under which thermalization happens and discuss the underlying physics. Based on these results, we also present a fully general quantum algorithm for preparing Gibbs states on a quantum computer with a certified runtime and error bound. This complements quantum Metropolis algorithms, which are expected to be efficient but have no known runtime estimates and only work for local Hamiltonians.
We develop a scheme for engineering genuine thermal states in analog quantum simulation platforms by coupling local degrees of freedom to driven, dissipative ancilla pseudospins. We demonstrate the scheme in a many-body quantum spin lattice simulatio n setting. A Born-Markov master equation describing the dynamics of the many-body system is developed, and we show that if the ancilla energies are periodically modulated, with a carefully chosen hierarchy of timescales, one can effectively thermalize the many-body system. Through analysis of the time-dependent dynamical generator, we determine the conditions under which the true thermal state is an approximate dynamical fixed point for general system Hamiltonians. Finally, we evaluate the thermalization protocol through numerical simulation and discuss prospects for implementation on current quantum simulation hardware.
Thermal states are the bedrock of statistical physics. Nevertheless, when and how they actually arise in closed quantum systems is not fully understood. We consider this question for systems with local Hamiltonians on finite quantum lattices. In a fi rst step, we show that states with exponentially decaying correlations equilibrate after a quantum quench. Then we show that the equilibrium state is locally equivalent to a thermal state, provided that the free energy of the equilibrium state is sufficiently small and the thermal state has exponentially decaying correlations. As an application, we look at a related important question: When are thermal states stable against noise? In other words, if we locally disturb a closed quantum system in a thermal state, will it return to thermal equilibrium? We rigorously show that this occurs when the correlations in the thermal state are exponentially decaying. All our results come with finite-size bounds, which are crucial for the growing field of quantum thermodynamics and other physical applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا