ﻻ يوجد ملخص باللغة العربية
The paper is a comprehensive study of the $L_p$ and the Schauder estimates for higher-order divergence type parabolic systems with discontinuous coefficients in the half space and cylindrical domains with conormal derivative boundary condition. For the $L_p$ estimates, we assume that the leading coefficients are only bounded measurable in the $t$ variable and $VMO$ with respect to $x$. We also prove the Schauder estimates in two situations: the coefficients are Holder continuous only in the $x$ variable; the coefficients are Holder continuous in both variables.
We obtain the maximal regularity for the mixed Dirichlet-conormal problem in cylindrical domains with time-dependent separations, which is the first of its kind. The boundary of the domain is assumed to be Reifenberg-flat and the separation is locall
We establish existence and various estimates of fundamental matrices and Greens matrices for divergence form, second order strongly parabolic systems in arbitrary cylindrical domains under the assumption that solutions of the systems satisfy an inter
We construct fundamental solutions of second-order parabolic systems of divergence form with bounded and measurable leading coefficients and divergence free first-order coefficients in the class of $BMO^{-1}_x$, under the assumption that weak solutio
We study the divergence form second-order elliptic equations with mixed Dirichlet-conormal boundary conditions. The unique $W^{1,p}$ solvability is obtained with $p$ being in the optimal range $(4/3,4)$. The leading coefficients are assumed to have s
Conditions for the existence and uniqueness of weak solutions for a class of nonlinear nonlocal degenerate parabolic equations are established. The asymptotic behaviour of the solutions as time tends to infinity are also studied. In particular, the f