ترغب بنشر مسار تعليمي؟ اضغط هنا

A new method for classifying galaxy SEDs from multi-wavelength photometry

140   0   0.0 ( 0 )
 نشر من قبل Vivienne Wild
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Vivienne Wild




اسأل ChatGPT حول البحث

We present a new method to classify the broad band optical-NIR spectral energy distributions (SEDs) of galaxies using three shape parameters (super-colours) based on a Principal Component Analysis of model SEDs. As well as providing a compact representation of the wide variety of SED shapes, the method allows for easy visualisation of information loss and biases caused by the incomplete sampling of the rest-frame SED as a function of redshift. We apply the method to galaxies in the UKIDSS Ultra Deep Survey with 0.9<z<1.2, and confirm our classifications by stacking rest-frame optical spectra for a fraction of objects in each class. As well as cleanly separating a tight red-sequence from star-forming galaxies, three unusual populations are identifiable by their unique colours: very dusty star-forming galaxies with high metallicity and old mean stellar age; post-starburst galaxies which have formed greater than around 10% of their mass in a recent unsustained starburst event; and metal-poor quiescent dwarf galaxies. We find that quiescent galaxies account for 45% of galaxies with log(M*/Msol)>11, declining steadily to 13% at log(M*/Msol)=10. The properties and mass-function of the post-starburst galaxies are consistent with a scenario in which gas-rich mergers contribute to the growth of the low and intermediate mass range of the red sequence.



قيم البحث

اقرأ أيضاً

[Abridged] The environment where galaxies are found heavily influences their evolution. Close groupings, like the cores of galaxy clusters or compact groups, evolve in ways far more dramatic than their isolated counterparts. We have conducted a multi wavelength study of HCG7, consisting of four giant galaxies: 3 spirals and 1 lenticular. We use Hubble Space Telescope (HST) imaging to identify and characterize the young and old star cluster populations. We find young massive clusters (YMC) mostly in the three spirals, while the lenticular features a large, unimodal population of globular clusters (GC) but no detectable clusters with ages less than ~Gyr. The spatial and approximate age distributions of the ~300 YMCs and ~150 GCs thus hint at a regular star formation history in the group over a Hubble time. While at first glance the HST data show the galaxies as undisturbed, our deep ground-based, wide-field imaging that extends the HST coverage reveals faint signatures of stellar material in the intra-group medium. We do not detect the intra-group medium in HI or Chandra X-ray observations, signatures that would be expected to arise from major mergers. We find that the HI gas content of the individual galaxies and the group as a whole are a third of the expected abundance. The appearance of quiescence is challenged by spectroscopy that reveals an intense ionization continuum in one galaxy nucleus, and post-burst characteristics in another. Our spectroscopic survey of dwarf galaxy members yields one dwarf elliptical in an apparent tidal feature. We therefore suggest an evolutionary scenario for HCG7, whereby the galaxies convert most of their available gas into stars without major mergers and result in a dry merger. As the conditions governing compact groups are reminiscent of galaxies at intermediate redshift, we propose that HCGs are appropriate for studying galaxy evolution at z~1-2.
We present a UV-to-mid infrared multi-wavelength catalog in the CANDELS/GOODS-S field, combining the newly obtained CANDELS HST/WFC3 F105W, F125W, and F160W data with existing public data. The catalog is based on source detection in the WFC3 F160W ba nd. The F160W mosaic includes the data from CANDELS deep and wide observations as well as previous ERS and HUDF09 programs. The mosaic reaches a 5$sigma$ limiting depth (within an aperture of radius 0.17 arcsec) of 27.4, 28.2, and 29.7 AB for CANDELS wide, deep, and HUDF regions, respectively. The catalog contains 34930 sources with the representative 50% completeness reaching 25.9, 26.6, and 28.1 AB in the F160W band for the three regions. In addition to WFC3 bands, the catalog also includes data from UV (U-band from both CTIO/MOSAIC and VLT/VIMOS), optical (HST/ACS F435W, F606W, F775W, F814W, and F850LP), and infrared (HST/WFC3 F098M, VLT/ISAAC Ks, VLT/HAWK-I Ks, and Spitzer/IRAC 3.6, 4.5, 5.8, 8.0 $mu$m) observations. The catalog is validated via stellar colors, comparison with other published catalogs, zeropoint offsets determined from the best-fit templates of the spectral energy distribution of spectroscopically observed objects, and the accuracy of photometric redshifts. The catalog is able to detect unreddened star-forming (passive) galaxies with stellar mass of 10^{10}M_odot at a 50% completeness level to z$sim$3.4 (2.8), 4.6 (3.2), and 7.0 (4.2) in the three regions. As an example of application, the catalog is used to select both star-forming and passive galaxies at z$sim$2--4 via the Balmer break. It is also used to study the color--magnitude diagram of galaxies at 0<z<4.
The Kepler mission has provided a wealth of data, revealing new insights in time-domain astronomy. However, Keplers single band-pass has limited studies to a single wavelength. In this work we build a data-driven, pixel-level model for the Pixel Resp onse Function (PRF) of Kepler targets, modeling the image data from the spacecraft. Our model is sufficiently flexible to capture known detector effects, such as non-linearity, intra-pixel sensitivity variations, and focus change. In theory, the shape of the Kepler PRF should also be weakly wavelength dependent, due to optical chromatic aberration and wavelength dependent detector response functions. We are able to identify these predicted shape changes to the PRF using the residuals between Kepler data and our model. In this work, we show that these PRF changes correspond to wavelength variability in Kepler targets using a small sample of eclipsing binaries. Using our model, we demonstrate that pixel-level light curves of eclipsing binaries show variable eclipse depths, ellipsoidal modulation and limb darkening. These changes at the pixel level are consistent with multi-wavelength photometry. Our work suggests each pixel in the Kepler data of a single target has a different effective wavelength, ranging from $approx$ 550-750 $nm$. In this proof of concept, we demonstrate our model, and discuss possible use cases for the wavelength dependent Pixel Response Function of Kepler. These use cases include characterizing variable systems, and vetting exoplanet discoveries at the pixel level. The chromatic PRF of Kepler is due to weak wavelength dependence in the optical systems and detector of the telescope, and similar chromatic PRFs are expected in other similar telescopes, notably the NASA TESS telescope.
Aims. This work investigates the potential of using the wavelength-dependence of galaxy structural parameters (Sersic index, n, and effective radius, Re) to separate galaxies into distinct types. Methods. A sample of nearby galaxies with reliable vis ual morphologies is considered, for which we measure structural parameters by fitting multi-wavelength single-Sersic models. Additionally, we use a set of artificially redshifted galaxies to test how these classifiers behave when the signal-to-noise decreases. Results. We show that the wavelength-dependence of n may be employed to separate visually-classified early- and late-type galaxies, in a manner similar to the use of colour and n. Furthermore, we find that the wavelength variation of n can recover galaxies that are misclassified by these other morphological proxies. Roughly half of the spiral galaxies that contaminate an early-type sample selected using (u-r) versus n can be correctly identified as late-types by N, the ratio of n measured in two different bands. Using a set of artificially-redshifted images, we show that this technique remains effective up to z ~ 0.1. N can therefore be used to achieve purer samples of early-types and more complete samples of late-types than using a colour-n cut alone. We also study the suitability of R, the ratio of Re in two different bands, as a morphological classifier, but find that the average sizes of both early- and late-type galaxies do not change substantially over optical wavelengths.
We have pioneered a new method for the measurement of extragalactic distances. This method uses the time-lag between variations in the short wavelength and long wavelength light from an active galactic nucleus (AGN), based on a quantitative physical model of dust reverberation that relates the time-lag to the absolute luminosity of the AGN. We use the large homogeneous data set from intensive monitoring observations in optical and near-infrared wavelength bands with the dedicated 2-m MAGNUM telescope to obtain the distances to 17 AGNs in the redshift range z=0.0024 to z=0.0353. These distance measurements are compared with distances measured using Cepheid variable stars, and are used to infer that H_0= 73 +- 3 (random) km/s/Mpc. The systematic error in H_0 is examined, and the uncertainty in the size distribution of dust grains is the largest source of the systematic error, which is much reduced for a sample of AGNs for which their parameter values in the model of dust reverberation are individually measured. This AGN time-lag method can be used beyond 30 Mpc, the farthest distance reached by extragalactic Cepheids, and can be extended to high-redshift quasi-stellar objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا